Research Article
BibTex RIS Cite
Year 2020, Issue: 31, 95 - 103, 30.06.2020

Abstract

References

  • S.Gahler, 2-metric Raume and ihre topologische strucktur, Math. Nachr. 26 (1963) 115-148.
  • S.Gahler, Lineare 2-normietre Raume, Math. Nachr. 28 (1965) 1-43.
  • K. S. Ha, Y. J. Cho, and A. White, Strictly convex and strictly 2-convex 2-normed spaces, Mathematica Japonica 33(3) 1988 375-384.
  • B.C. Dhage, Generalized metric spaces mappings with fi xed point, Bull. Calcutta Math. Soc. 84 (1992) 329-336.
  • Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006) 289-297.
  • S. Sedghi, K.P.R. Rao, N. Shobe, Common fi xed point theorems for six weakly compatible mappings in D*-metric spaces, Internat J. Math. Math. Sci. 6 (2007) 225-237.
  • S. Sedghi, N. Shobe, H. Zhou, A common fixed point theorem in D*-metric spaces, Fixed Point Theory Appl. (2007) Article ID 27906 13 pages.
  • S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64(3) (2012) 258-266.
  • S. Sedghi and N. V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik 66(1) (2014) 113-124.
  • M. Akram, A. A. Siddiqui, A fixed point theorem for A-contractions on a class of generalised metric spaces, Korean J. Math. Sciences 10(2) (2003) 1-5.
  • M. Akram, A. A. Zafar, A. A. Siddiqui, A general class of contractions: A- contractions, Novi Sad J. Math. 38(1) (2008) 25-33.
  • M. Saha, D. Dey, Fixed point theorems for a class of A-contractions on a 2-metric space, Novi Sad J. Math. 40(1) (2010) 3-8.
  • A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci 29(9) (2002) 531-536.
  • D. Dey, A. Ganguly, M. Saha, Fixed point theorems for mappings under general contractive condition of integral type, Bull. Math. Anal. Appl. 3(1) (2011) 27-34.
  • B.E . Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences 63 (2003) 4007- 4013.
  • C. Vetro, F. Vetro, A Homotopy Fixed Point Theorem in 0-Complete Partial Metric Space, Filomat 29(9) (2015) 2037-2048.

On Generalized Contraction Principles over S-metric Spaces with Application to Homotopy

Year 2020, Issue: 31, 95 - 103, 30.06.2020

Abstract

In the present paper, we introduce the concept of a class of generalized
contraction mappings called A-contraction on S-metric space and investigate the
existence of fixed points over such spaces. Analogue result has been formulated
in integral setting over such an S-metric space. Moreover, the result is applied to
homotopy theory.
-

References

  • S.Gahler, 2-metric Raume and ihre topologische strucktur, Math. Nachr. 26 (1963) 115-148.
  • S.Gahler, Lineare 2-normietre Raume, Math. Nachr. 28 (1965) 1-43.
  • K. S. Ha, Y. J. Cho, and A. White, Strictly convex and strictly 2-convex 2-normed spaces, Mathematica Japonica 33(3) 1988 375-384.
  • B.C. Dhage, Generalized metric spaces mappings with fi xed point, Bull. Calcutta Math. Soc. 84 (1992) 329-336.
  • Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006) 289-297.
  • S. Sedghi, K.P.R. Rao, N. Shobe, Common fi xed point theorems for six weakly compatible mappings in D*-metric spaces, Internat J. Math. Math. Sci. 6 (2007) 225-237.
  • S. Sedghi, N. Shobe, H. Zhou, A common fixed point theorem in D*-metric spaces, Fixed Point Theory Appl. (2007) Article ID 27906 13 pages.
  • S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64(3) (2012) 258-266.
  • S. Sedghi and N. V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik 66(1) (2014) 113-124.
  • M. Akram, A. A. Siddiqui, A fixed point theorem for A-contractions on a class of generalised metric spaces, Korean J. Math. Sciences 10(2) (2003) 1-5.
  • M. Akram, A. A. Zafar, A. A. Siddiqui, A general class of contractions: A- contractions, Novi Sad J. Math. 38(1) (2008) 25-33.
  • M. Saha, D. Dey, Fixed point theorems for a class of A-contractions on a 2-metric space, Novi Sad J. Math. 40(1) (2010) 3-8.
  • A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci 29(9) (2002) 531-536.
  • D. Dey, A. Ganguly, M. Saha, Fixed point theorems for mappings under general contractive condition of integral type, Bull. Math. Anal. Appl. 3(1) (2011) 27-34.
  • B.E . Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences 63 (2003) 4007- 4013.
  • C. Vetro, F. Vetro, A Homotopy Fixed Point Theorem in 0-Complete Partial Metric Space, Filomat 29(9) (2015) 2037-2048.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Debashis Dey This is me

Kushal Roy This is me

Mantu Saha This is me

Publication Date June 30, 2020
Submission Date January 9, 2019
Published in Issue Year 2020 Issue: 31

Cite

APA Dey, D., Roy, K., & Saha, M. (2020). On Generalized Contraction Principles over S-metric Spaces with Application to Homotopy. Journal of New Theory(31), 95-103.
AMA Dey D, Roy K, Saha M. On Generalized Contraction Principles over S-metric Spaces with Application to Homotopy. JNT. June 2020;(31):95-103.
Chicago Dey, Debashis, Kushal Roy, and Mantu Saha. “On Generalized Contraction Principles over S-Metric Spaces With Application to Homotopy”. Journal of New Theory, no. 31 (June 2020): 95-103.
EndNote Dey D, Roy K, Saha M (June 1, 2020) On Generalized Contraction Principles over S-metric Spaces with Application to Homotopy. Journal of New Theory 31 95–103.
IEEE D. Dey, K. Roy, and M. Saha, “On Generalized Contraction Principles over S-metric Spaces with Application to Homotopy”, JNT, no. 31, pp. 95–103, June 2020.
ISNAD Dey, Debashis et al. “On Generalized Contraction Principles over S-Metric Spaces With Application to Homotopy”. Journal of New Theory 31 (June 2020), 95-103.
JAMA Dey D, Roy K, Saha M. On Generalized Contraction Principles over S-metric Spaces with Application to Homotopy. JNT. 2020;:95–103.
MLA Dey, Debashis et al. “On Generalized Contraction Principles over S-Metric Spaces With Application to Homotopy”. Journal of New Theory, no. 31, 2020, pp. 95-103.
Vancouver Dey D, Roy K, Saha M. On Generalized Contraction Principles over S-metric Spaces with Application to Homotopy. JNT. 2020(31):95-103.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).