A. Rosenfeld, Digital Topology, Amer. Math. Monthly 86 (1979) 621-630.
R, Devi, K. Bhuvaneshwari and H. Maki, Weak Form of g*-closed Sets, where \rho \in \alpha, \alpha*, \alpha**
and The Digital Plane, Mem. Fac. Sci. Kochi Univ. Math. 25 (2004) 37-54.
R. Devi, S. N. Rajapriya, K. Muthukumarswamy and H. Maki, \xi-Closed Sets in Topological Spaces
and Digital Planes, Scientiae Mathematicae Japanicae, Online e-2006 615-631.
R. Devi and M. Vigneshwaram, g*-Closed Sets in the Digital Plane, Int. Jl. of General Topology,
4(1-2) (2011) 91-95.
R. Devi and M. Vigneshwaran, On GO-Kernel in Digital Plane, Int. Jl. of Mathematical Archive,
3(6) (2012) 2358-2373.
E. D. Khalimsky, R. Kopperman and P. R. Meyer, Computer Graphics and Connected Topologies
in Finite Ordered Set, Topology Applications, 36 (1990) 1-17.
T. Y. Kong, R. Kopperman and P. R. Meyer, A Topologies Approach to Digital Topology, Amer.
Math. Monthly, 98 (1991) 901-907.
P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalized Star w\lpha-closed Sets in Topological
Spaces, Jl. of New Results in Science, 9 (2015) 37-45.
S. S. Benchalli, P. G. Patil and P. M. Nalwad, w\alpha-closed sets in topological spaces, The Global J.
Appl. Maths Math. Sciences, 2(1-2) (2009) 53-63.
P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalized Star w\alpha-spaces in Topological
Spaces, Int. Jl. of Scientic and Innovative Mathematical Research, 3 Special Issue 1 (2015)
399-391.
S. S. Benchalli, P. G. Patil and P. M. Nalwad, some weaker forms of continuous functions in
topological spaces, Jl. of Advanced Studies in Topology, 7(2) (2016) 101-109.
The purpose of this paper is to introduce a new class of closed set called
g*w\alpha-closed sets in digital topology. We establish a relationship between closed and
g*w\alpha-closed sets in digital topology. Also, we obtained the properties of g*w\alpha-closed
sets in digital plane.
A. Rosenfeld, Digital Topology, Amer. Math. Monthly 86 (1979) 621-630.
R, Devi, K. Bhuvaneshwari and H. Maki, Weak Form of g*-closed Sets, where \rho \in \alpha, \alpha*, \alpha**
and The Digital Plane, Mem. Fac. Sci. Kochi Univ. Math. 25 (2004) 37-54.
R. Devi, S. N. Rajapriya, K. Muthukumarswamy and H. Maki, \xi-Closed Sets in Topological Spaces
and Digital Planes, Scientiae Mathematicae Japanicae, Online e-2006 615-631.
R. Devi and M. Vigneshwaram, g*-Closed Sets in the Digital Plane, Int. Jl. of General Topology,
4(1-2) (2011) 91-95.
R. Devi and M. Vigneshwaran, On GO-Kernel in Digital Plane, Int. Jl. of Mathematical Archive,
3(6) (2012) 2358-2373.
E. D. Khalimsky, R. Kopperman and P. R. Meyer, Computer Graphics and Connected Topologies
in Finite Ordered Set, Topology Applications, 36 (1990) 1-17.
T. Y. Kong, R. Kopperman and P. R. Meyer, A Topologies Approach to Digital Topology, Amer.
Math. Monthly, 98 (1991) 901-907.
P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalized Star w\lpha-closed Sets in Topological
Spaces, Jl. of New Results in Science, 9 (2015) 37-45.
S. S. Benchalli, P. G. Patil and P. M. Nalwad, w\alpha-closed sets in topological spaces, The Global J.
Appl. Maths Math. Sciences, 2(1-2) (2009) 53-63.
P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalized Star w\alpha-spaces in Topological
Spaces, Int. Jl. of Scientic and Innovative Mathematical Research, 3 Special Issue 1 (2015)
399-391.
S. S. Benchalli, P. G. Patil and P. M. Nalwad, some weaker forms of continuous functions in
topological spaces, Jl. of Advanced Studies in Topology, 7(2) (2016) 101-109.