Research Article
BibTex RIS Cite

Spherical Bipolar Fuzzy Sets and Its Application in Multi Criteria Decision Making Problem

Year 2020, Issue: 32, 58 - 70, 30.09.2020

Abstract

This paper introduces the concept of Spherical Bipolar Fuzzy sets (SBFS) as a combination of Spherical Fuzzy sets and Bipolar Valued Fuzzy Sets along with their properties. Arithmetic operations involving addition, multiplication and subtraction are presented together with their proofs. A multi criteria decision making method is established in which the evaluation values of alternatives respective to criteria are represented in SBFS. Finally, a numerical example shows the application of the proposed method.

References

  • F. Smarandache. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic.Rehoboth: American Research Press (1999) 1-141.
  • G. İntepe, E. Bozdağ, T. Koç, The Selection of Technology Forecasting Method Using A Multi-Criteria Interval-Valued Intuitionistic Fuzzy Group Decision Making Approach, Computers and Industrial Engineering 65(2) (2013) 277-285.
  • F. Smarandache, Neutrosophic Set- A Generalization of The Intuitionistic Fuzzy Set, International Journal of Pure and Applied Mathematics 24(3) (2004) 1-15.
  • I. Grattan-Guinness, Fuzzy Membership Mapped onto Interval and Many-Valued Quantities, Mathematical Logic Quarterly 22(1) (1976) 149-160.
  • J. M. Garibaldi, T. Özen, Uncertain Fuzzy Reasoning: A Case Study in Modelling Expert Decision Making. IEEE Transactions on Fuzzy Systems 15(1) (2007) 16-30.
  • K. T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy sets and Systems 20(1) (1986) 87-96.
  • L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338-353.
  • L. A. Zadeh, The Concept of a Linguistic Variable and its application to Approximate Reasoning, Information Sciences 8(3) (1975) 199-249.
  • Y. Yang, F. Chiclana, Intuitionistic Fuzzy Sets: Spherical Representation and Distances, International Journal of Intelligent Systems 24(4) (2009) 399-420.
  • R. R. Yager, On The Theory of Bags, International Journal of General Systems 13(1) (1986) 23–37.
  • V. Torra, Hesitant Fuzzy Sets, International Journal of Intelligent Systems 25(6) (2010) 529-539.
  • K. Atanassov, Geometrical Interpretation of The Elements of The Intuitionistic Fuzzy Objects, Preprint IM-MFAIS, 1-89, Sofia. Reprinted: International Journal Bioautomation 20 (S1) (2016) 27-42.
  • K. Atanassov, Intuitionistic Fuzzy Sets, Springer, Heidelberg (1999).
  • P. J. Ren, Z. Xu, X. J. Gou, Pythagorean Fuzzy TODIM Approach to Multi-Criteria Decision Making, Applied Soft Computing 31 (2016) 246–259.
  • X. Gou, Z. Xu, P. Ren, The Properties of Continuous Pythagorean Fuzzy Information, International Journal of Intelligent Systems 31(5) (2016) 401-424.
  • S. Broumi, M. Murugappan, M. Talea, A. Bakali, F. Smarandache, P. K. Singh, A. Dey, Single Valued (2𝑛+1) Sided Polygonal Neutrosophic Numbers and Single Valued (2𝑛) Sided Polygonal Neutrosophic Numbers, Neutrosophic Sets and Systems 25 (2019) 54-65.
  • S. Broumi, M. Talea, A. Bakali, P. K. Singh, F. Smarandache, Energy and Spectrum Analysis of Interval Valued Neutrosophic Graph using MATLAB, Neutrosophic Sets and Systems 24 (2019) 46-60.
  • S. Broumi, M. Talea, A. Bakali, F. Smarandache, P. K. Singh, M. Murugappan, V. V. Rao, A Neutrosophic Technique Based Efficient Routing Protocol for MANET Based on Its Energy and Distance, Neutrosophic Sets and Systems 24 (2019) 61-69.
  • S. Broumi, A. Dey, M. Talea, A. Bakali, F. Smarandache, D. Nagarajan, M. Lathamaheswari, R. Kumar, Shortest Path Problem using Bellman Algorithm under Neutrosophic Environment, Complex and Intelligent Systems 5 (2019) 409-416. https://doi.org/10.1007/s40747-019-0101-8
  • S. Broumi, M. Talea, A. Bakali, F. Smarandache, D. Nagarajan, M. Lathamaheswari, M. Parimala, Shortest Path Problem in Fuzzy, Intuitionistic Fuzzy and Neutrosophic Environment: An Overview, Complex and Intelligent Systems 5 (2019) 371-378. https://doi.org/10.1007/s40747-019-0098-z
  • I. Antonov, On A New Geometrical Interpretation of The Intuitionistic Fuzzy Sets, Notes on Intuitionistic Fuzzy Sets 1(1) (1995) 29–31.
  • Z. Gong, X. Xu, Y. Yang, Y. Zhou, H. Zhang, The Spherical Distance for Intuitionistic Fuzzy Sets and Its Application in Decision Analysis, Technological and Economic Development of Economy 22(3) (2016) 393-415.
  • R. Sambuc, Function 𝛷-Flous, Application a l’aide au Diagnostic en Pathologie Thyroidienne. University of Marseille (1975).
  • K. M. Lee, 2000, Bipolar Valued Fuzzy Sets and Their Operations, Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, (2000) 307-312.
  • K. M. Lee, Comparison of Interval Valued Fuzzy Sets, Intuitionistic Fuzzy Sets and Bipolar-Valued Fuzzy Sets, Journal of Korean Institute of Intelligent Systems 14(2) (2004) 125-129.
  • F. K. Gündoğu, C. Kahraman, Spherical Fuzzy Sets and Spherical Fuzzy TOPSIS Method, Journal of Intelligent & Fuzzy Systems 36(1) (2019) 337-352.
Year 2020, Issue: 32, 58 - 70, 30.09.2020

Abstract

References

  • F. Smarandache. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic.Rehoboth: American Research Press (1999) 1-141.
  • G. İntepe, E. Bozdağ, T. Koç, The Selection of Technology Forecasting Method Using A Multi-Criteria Interval-Valued Intuitionistic Fuzzy Group Decision Making Approach, Computers and Industrial Engineering 65(2) (2013) 277-285.
  • F. Smarandache, Neutrosophic Set- A Generalization of The Intuitionistic Fuzzy Set, International Journal of Pure and Applied Mathematics 24(3) (2004) 1-15.
  • I. Grattan-Guinness, Fuzzy Membership Mapped onto Interval and Many-Valued Quantities, Mathematical Logic Quarterly 22(1) (1976) 149-160.
  • J. M. Garibaldi, T. Özen, Uncertain Fuzzy Reasoning: A Case Study in Modelling Expert Decision Making. IEEE Transactions on Fuzzy Systems 15(1) (2007) 16-30.
  • K. T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy sets and Systems 20(1) (1986) 87-96.
  • L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338-353.
  • L. A. Zadeh, The Concept of a Linguistic Variable and its application to Approximate Reasoning, Information Sciences 8(3) (1975) 199-249.
  • Y. Yang, F. Chiclana, Intuitionistic Fuzzy Sets: Spherical Representation and Distances, International Journal of Intelligent Systems 24(4) (2009) 399-420.
  • R. R. Yager, On The Theory of Bags, International Journal of General Systems 13(1) (1986) 23–37.
  • V. Torra, Hesitant Fuzzy Sets, International Journal of Intelligent Systems 25(6) (2010) 529-539.
  • K. Atanassov, Geometrical Interpretation of The Elements of The Intuitionistic Fuzzy Objects, Preprint IM-MFAIS, 1-89, Sofia. Reprinted: International Journal Bioautomation 20 (S1) (2016) 27-42.
  • K. Atanassov, Intuitionistic Fuzzy Sets, Springer, Heidelberg (1999).
  • P. J. Ren, Z. Xu, X. J. Gou, Pythagorean Fuzzy TODIM Approach to Multi-Criteria Decision Making, Applied Soft Computing 31 (2016) 246–259.
  • X. Gou, Z. Xu, P. Ren, The Properties of Continuous Pythagorean Fuzzy Information, International Journal of Intelligent Systems 31(5) (2016) 401-424.
  • S. Broumi, M. Murugappan, M. Talea, A. Bakali, F. Smarandache, P. K. Singh, A. Dey, Single Valued (2𝑛+1) Sided Polygonal Neutrosophic Numbers and Single Valued (2𝑛) Sided Polygonal Neutrosophic Numbers, Neutrosophic Sets and Systems 25 (2019) 54-65.
  • S. Broumi, M. Talea, A. Bakali, P. K. Singh, F. Smarandache, Energy and Spectrum Analysis of Interval Valued Neutrosophic Graph using MATLAB, Neutrosophic Sets and Systems 24 (2019) 46-60.
  • S. Broumi, M. Talea, A. Bakali, F. Smarandache, P. K. Singh, M. Murugappan, V. V. Rao, A Neutrosophic Technique Based Efficient Routing Protocol for MANET Based on Its Energy and Distance, Neutrosophic Sets and Systems 24 (2019) 61-69.
  • S. Broumi, A. Dey, M. Talea, A. Bakali, F. Smarandache, D. Nagarajan, M. Lathamaheswari, R. Kumar, Shortest Path Problem using Bellman Algorithm under Neutrosophic Environment, Complex and Intelligent Systems 5 (2019) 409-416. https://doi.org/10.1007/s40747-019-0101-8
  • S. Broumi, M. Talea, A. Bakali, F. Smarandache, D. Nagarajan, M. Lathamaheswari, M. Parimala, Shortest Path Problem in Fuzzy, Intuitionistic Fuzzy and Neutrosophic Environment: An Overview, Complex and Intelligent Systems 5 (2019) 371-378. https://doi.org/10.1007/s40747-019-0098-z
  • I. Antonov, On A New Geometrical Interpretation of The Intuitionistic Fuzzy Sets, Notes on Intuitionistic Fuzzy Sets 1(1) (1995) 29–31.
  • Z. Gong, X. Xu, Y. Yang, Y. Zhou, H. Zhang, The Spherical Distance for Intuitionistic Fuzzy Sets and Its Application in Decision Analysis, Technological and Economic Development of Economy 22(3) (2016) 393-415.
  • R. Sambuc, Function 𝛷-Flous, Application a l’aide au Diagnostic en Pathologie Thyroidienne. University of Marseille (1975).
  • K. M. Lee, 2000, Bipolar Valued Fuzzy Sets and Their Operations, Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, (2000) 307-312.
  • K. M. Lee, Comparison of Interval Valued Fuzzy Sets, Intuitionistic Fuzzy Sets and Bipolar-Valued Fuzzy Sets, Journal of Korean Institute of Intelligent Systems 14(2) (2004) 125-129.
  • F. K. Gündoğu, C. Kahraman, Spherical Fuzzy Sets and Spherical Fuzzy TOPSIS Method, Journal of Intelligent & Fuzzy Systems 36(1) (2019) 337-352.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Rayappan Princy This is me 0000-0002-4899-4038

Krishnaswamy Mohana This is me

Publication Date September 30, 2020
Submission Date July 22, 2019
Published in Issue Year 2020 Issue: 32

Cite

APA Princy, R., & Mohana, K. (2020). Spherical Bipolar Fuzzy Sets and Its Application in Multi Criteria Decision Making Problem. Journal of New Theory(32), 58-70.
AMA Princy R, Mohana K. Spherical Bipolar Fuzzy Sets and Its Application in Multi Criteria Decision Making Problem. JNT. September 2020;(32):58-70.
Chicago Princy, Rayappan, and Krishnaswamy Mohana. “Spherical Bipolar Fuzzy Sets and Its Application in Multi Criteria Decision Making Problem”. Journal of New Theory, no. 32 (September 2020): 58-70.
EndNote Princy R, Mohana K (September 1, 2020) Spherical Bipolar Fuzzy Sets and Its Application in Multi Criteria Decision Making Problem. Journal of New Theory 32 58–70.
IEEE R. Princy and K. Mohana, “Spherical Bipolar Fuzzy Sets and Its Application in Multi Criteria Decision Making Problem”, JNT, no. 32, pp. 58–70, September 2020.
ISNAD Princy, Rayappan - Mohana, Krishnaswamy. “Spherical Bipolar Fuzzy Sets and Its Application in Multi Criteria Decision Making Problem”. Journal of New Theory 32 (September 2020), 58-70.
JAMA Princy R, Mohana K. Spherical Bipolar Fuzzy Sets and Its Application in Multi Criteria Decision Making Problem. JNT. 2020;:58–70.
MLA Princy, Rayappan and Krishnaswamy Mohana. “Spherical Bipolar Fuzzy Sets and Its Application in Multi Criteria Decision Making Problem”. Journal of New Theory, no. 32, 2020, pp. 58-70.
Vancouver Princy R, Mohana K. Spherical Bipolar Fuzzy Sets and Its Application in Multi Criteria Decision Making Problem. JNT. 2020(32):58-70.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).