Research Article
BibTex RIS Cite
Year 2021, Issue: 37, 35 - 44, 31.12.2021
https://doi.org/10.53570/jnt.1020089

Abstract

Supporting Institution

yok

Project Number

yok

Thanks

Dergi yönetimine ve bu makaleyi değerlendirecek hakemlere şimdiden teşekkür ederiz.

References

  • H. Hagen, Bézier-Curves with Curvature and Torsion Continuity, The Rocky Mountain Journal of Mathematics 16(3) (1986) 629-638.
  • F. Taş, K. Ilarslan, A New Approach to Design the Ruled Surface, International Journal of Geometric Methods in Modern Physics 16(6) (2019).
  • G. Farin, Curves and Surfaces for Computer-Aided Geometric Design, Academic Press, 1996.
  • Ş. Kılıçoğlu, S. Şenyurt, On the Cubic Bézier Curves in E3, Ordu University Journal of Science and Technology 9(2) (2019) 83-97.
  • Ş. Kılıçoğlu, S. Şenyurt, On the Involute of the Cubic Bézier Curve by Using Matrix Representation in E3, European Journal of Pure and Applied Mathematics 13 (2020) 216-226.
  • Ş. Kılıçoğlu, S. Şenyurt, On the Matrix Representation of 5th order Bézier Curve and derivatives, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistic (2021) In press.
  • Ş. Kılıçoğlu, S. Şenyurt, On the Matrix Representation of Bézier Curves and Derivatives in E3, Sigma Journal of Engineering and Natural Sciences (2021) In press.
  • Ş. Kılıçoğlu, S. Şenyurt, On the Bertrand Mate of a Cubic Bézier Curve by Using Matrix Representation in E3, 18th International Geometry Symposium in Honour of Prof. Dr. Sadık Keleş, Malatya, Turkey, 2021, pp. 129.
  • Ş. Kılıçoğlu, S. Şenyurt, On the Mannheim Partner of a Cubic Bézier Curve in E3, 10th International Eurasian Conference on Mathematical and Applications, Sakarya, Turkey, 2021, pp. 154.
  • M. Incesu, S. Y. Evren, The Selection of Control Points for Two Open Non Uniform B-Spline Curves to Form Bertrand Pairs, Tblisi Journal of Mathematics, Special Issue 8 (2021) 195-208.
  • H. K. Samanci, M. Incesu, Investigating a Quadratic Bézier Curve Due to NCW and N-Bishop Frames, Turkish Journal of Mathematics and Computer Science 12(2) (2020) 120-127.

An examination on to find 5th Order B´ezier Curve in E^3

Year 2021, Issue: 37, 35 - 44, 31.12.2021
https://doi.org/10.53570/jnt.1020089

Abstract

In this study, we have examined how to find any 5th order Bézier curve with its known first, second and third derivatives, which are the 4th order, the cubic and the quadratic Bézier curves, respectively, based on the control points of given the derivatives. Also we give an example to find the 5th order Bézier curve with the given derivatives.

Project Number

yok

References

  • H. Hagen, Bézier-Curves with Curvature and Torsion Continuity, The Rocky Mountain Journal of Mathematics 16(3) (1986) 629-638.
  • F. Taş, K. Ilarslan, A New Approach to Design the Ruled Surface, International Journal of Geometric Methods in Modern Physics 16(6) (2019).
  • G. Farin, Curves and Surfaces for Computer-Aided Geometric Design, Academic Press, 1996.
  • Ş. Kılıçoğlu, S. Şenyurt, On the Cubic Bézier Curves in E3, Ordu University Journal of Science and Technology 9(2) (2019) 83-97.
  • Ş. Kılıçoğlu, S. Şenyurt, On the Involute of the Cubic Bézier Curve by Using Matrix Representation in E3, European Journal of Pure and Applied Mathematics 13 (2020) 216-226.
  • Ş. Kılıçoğlu, S. Şenyurt, On the Matrix Representation of 5th order Bézier Curve and derivatives, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistic (2021) In press.
  • Ş. Kılıçoğlu, S. Şenyurt, On the Matrix Representation of Bézier Curves and Derivatives in E3, Sigma Journal of Engineering and Natural Sciences (2021) In press.
  • Ş. Kılıçoğlu, S. Şenyurt, On the Bertrand Mate of a Cubic Bézier Curve by Using Matrix Representation in E3, 18th International Geometry Symposium in Honour of Prof. Dr. Sadık Keleş, Malatya, Turkey, 2021, pp. 129.
  • Ş. Kılıçoğlu, S. Şenyurt, On the Mannheim Partner of a Cubic Bézier Curve in E3, 10th International Eurasian Conference on Mathematical and Applications, Sakarya, Turkey, 2021, pp. 154.
  • M. Incesu, S. Y. Evren, The Selection of Control Points for Two Open Non Uniform B-Spline Curves to Form Bertrand Pairs, Tblisi Journal of Mathematics, Special Issue 8 (2021) 195-208.
  • H. K. Samanci, M. Incesu, Investigating a Quadratic Bézier Curve Due to NCW and N-Bishop Frames, Turkish Journal of Mathematics and Computer Science 12(2) (2020) 120-127.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences, Applied Mathematics
Journal Section Research Article
Authors

Şeyda Kılıçoglu 0000-0003-0252-1574

Süleyman Şenyurt 0000-0003-1097-5541

Project Number yok
Publication Date December 31, 2021
Submission Date November 6, 2021
Published in Issue Year 2021 Issue: 37

Cite

APA Kılıçoglu, Ş., & Şenyurt, S. (2021). An examination on to find 5th Order B´ezier Curve in E^3. Journal of New Theory(37), 35-44. https://doi.org/10.53570/jnt.1020089
AMA Kılıçoglu Ş, Şenyurt S. An examination on to find 5th Order B´ezier Curve in E^3. JNT. December 2021;(37):35-44. doi:10.53570/jnt.1020089
Chicago Kılıçoglu, Şeyda, and Süleyman Şenyurt. “An Examination on to Find 5th Order B´ezier Curve in E^3”. Journal of New Theory, no. 37 (December 2021): 35-44. https://doi.org/10.53570/jnt.1020089.
EndNote Kılıçoglu Ş, Şenyurt S (December 1, 2021) An examination on to find 5th Order B´ezier Curve in E^3. Journal of New Theory 37 35–44.
IEEE Ş. Kılıçoglu and S. Şenyurt, “An examination on to find 5th Order B´ezier Curve in E^3”, JNT, no. 37, pp. 35–44, December 2021, doi: 10.53570/jnt.1020089.
ISNAD Kılıçoglu, Şeyda - Şenyurt, Süleyman. “An Examination on to Find 5th Order B´ezier Curve in E^3”. Journal of New Theory 37 (December 2021), 35-44. https://doi.org/10.53570/jnt.1020089.
JAMA Kılıçoglu Ş, Şenyurt S. An examination on to find 5th Order B´ezier Curve in E^3. JNT. 2021;:35–44.
MLA Kılıçoglu, Şeyda and Süleyman Şenyurt. “An Examination on to Find 5th Order B´ezier Curve in E^3”. Journal of New Theory, no. 37, 2021, pp. 35-44, doi:10.53570/jnt.1020089.
Vancouver Kılıçoglu Ş, Şenyurt S. An examination on to find 5th Order B´ezier Curve in E^3. JNT. 2021(37):35-44.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).