Research Article
BibTex RIS Cite
Year 2023, Issue: 45, 46 - 56, 31.12.2023
https://doi.org/10.53570/jnt.1351848

Abstract

References

  • L. A. Zadeh, Fuzzy Sets, Information and Control 8 (3) (1965) 338--353.
  • J. Goguen, $\mathcal{L}$-Fuzzy Sets, Journal of Mathematical Analysis and Applications 18 (1) (1967) 145--174.
  • G. D. Birkhoff, Lattice Theory, 3rd Edition, American Mathematical Society, New York, 1973.
  • K. Menger, Statistical Metrics, Proceedings of the National Academy of Sciences 28 (12) (1942) 535--537.
  • B. Schweizer, A. Sklar, Statistical Metric Spaces, Pacific Journal of Mathematics 10 (1) (1960) 313--334.
  • B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Dover Publications, New York, 2011.
  • I. Kramosil, J. Michalek, Fuzzy Metrics and Statistical Metric Spaces, Kybernetica 11 (5) (1975) 336--344.
  • A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets and Systems 64 (3) (1994) 395--399.
  • V. Gregori, S. Morillas, A. Sapena, Examples of Fuzzy Metrics and Applications, Fuzzy Sets and Systems 170 (1) (2011) 95--111.
  • R. Saadati, A. Razani, H. Adibi, A Common Fixed Point Theorem in $\mathcal{L}$-Fuzzy Metric Spaces, Chaos, Solitons $\&$ Fractals 33 (2) (2007) 358--363.
  • S. Morillas, V. Gregori, G. Peris-Fajarnes, P. Latorre, A Fast Impulsive Noise Color Image Filter Using Fuzzy Metrics, Real-Time Imaging 11 (5-6) (2005) 417--428.
  • C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis, Springer-Verlag Berlin, Heidelberg, 1999.
  • C. D. Aliprantis, O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
  • C. Çevik, I. Altun, Vector Metric Spaces and Some Properties, Topological Methods in Nonlinear Analysis 34 (2) (2009) 375--382.
  • Ş. Eminoğlu, C. Çevik, Fuzzy Vector Metric Spaces and Some Results, Journal of Nonlinear Sciences and Applications 10 (2017) 3429--3436.

On Non-Archimedean $\mathcal{L}$-Fuzzy Vector Metric Spaces

Year 2023, Issue: 45, 46 - 56, 31.12.2023
https://doi.org/10.53570/jnt.1351848

Abstract

This paper contributes to the broader studies of fuzzy vector metric spaces and fuzzy metric spaces based on order structures beyond the unit interval. It defines the notions of the left (right) order convergence and continuity in non-Arcimedean $\mathcal{L}$-fuzzy vector metric spaces. The notation $\mathcal{M}_E(a,b,s)$ means the nearness between $a$ and $b$ according to any positive vector $s$. This study exemplifies definitions and reaches some well-known results. Moreover, it proposes the concept of $\mathcal{L}$-fuzzy vector metric diameter and studies some of its basic properties. Further, the present paper proves the Cantor intersection theorem and the Baire category theorem via these concepts. Finally, this study discusses the need for further research.

References

  • L. A. Zadeh, Fuzzy Sets, Information and Control 8 (3) (1965) 338--353.
  • J. Goguen, $\mathcal{L}$-Fuzzy Sets, Journal of Mathematical Analysis and Applications 18 (1) (1967) 145--174.
  • G. D. Birkhoff, Lattice Theory, 3rd Edition, American Mathematical Society, New York, 1973.
  • K. Menger, Statistical Metrics, Proceedings of the National Academy of Sciences 28 (12) (1942) 535--537.
  • B. Schweizer, A. Sklar, Statistical Metric Spaces, Pacific Journal of Mathematics 10 (1) (1960) 313--334.
  • B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Dover Publications, New York, 2011.
  • I. Kramosil, J. Michalek, Fuzzy Metrics and Statistical Metric Spaces, Kybernetica 11 (5) (1975) 336--344.
  • A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets and Systems 64 (3) (1994) 395--399.
  • V. Gregori, S. Morillas, A. Sapena, Examples of Fuzzy Metrics and Applications, Fuzzy Sets and Systems 170 (1) (2011) 95--111.
  • R. Saadati, A. Razani, H. Adibi, A Common Fixed Point Theorem in $\mathcal{L}$-Fuzzy Metric Spaces, Chaos, Solitons $\&$ Fractals 33 (2) (2007) 358--363.
  • S. Morillas, V. Gregori, G. Peris-Fajarnes, P. Latorre, A Fast Impulsive Noise Color Image Filter Using Fuzzy Metrics, Real-Time Imaging 11 (5-6) (2005) 417--428.
  • C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis, Springer-Verlag Berlin, Heidelberg, 1999.
  • C. D. Aliprantis, O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
  • C. Çevik, I. Altun, Vector Metric Spaces and Some Properties, Topological Methods in Nonlinear Analysis 34 (2) (2009) 375--382.
  • Ş. Eminoğlu, C. Çevik, Fuzzy Vector Metric Spaces and Some Results, Journal of Nonlinear Sciences and Applications 10 (2017) 3429--3436.
There are 15 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Article
Authors

Şehla Eminoğlu 0000-0003-3143-9369

Early Pub Date December 30, 2023
Publication Date December 31, 2023
Submission Date August 29, 2023
Published in Issue Year 2023 Issue: 45

Cite

APA Eminoğlu, Ş. (2023). On Non-Archimedean $\mathcal{L}$-Fuzzy Vector Metric Spaces. Journal of New Theory(45), 46-56. https://doi.org/10.53570/jnt.1351848
AMA Eminoğlu Ş. On Non-Archimedean $\mathcal{L}$-Fuzzy Vector Metric Spaces. JNT. December 2023;(45):46-56. doi:10.53570/jnt.1351848
Chicago Eminoğlu, Şehla. “On Non-Archimedean $\mathcal{L}$-Fuzzy Vector Metric Spaces”. Journal of New Theory, no. 45 (December 2023): 46-56. https://doi.org/10.53570/jnt.1351848.
EndNote Eminoğlu Ş (December 1, 2023) On Non-Archimedean $\mathcal{L}$-Fuzzy Vector Metric Spaces. Journal of New Theory 45 46–56.
IEEE Ş. Eminoğlu, “On Non-Archimedean $\mathcal{L}$-Fuzzy Vector Metric Spaces”, JNT, no. 45, pp. 46–56, December 2023, doi: 10.53570/jnt.1351848.
ISNAD Eminoğlu, Şehla. “On Non-Archimedean $\mathcal{L}$-Fuzzy Vector Metric Spaces”. Journal of New Theory 45 (December 2023), 46-56. https://doi.org/10.53570/jnt.1351848.
JAMA Eminoğlu Ş. On Non-Archimedean $\mathcal{L}$-Fuzzy Vector Metric Spaces. JNT. 2023;:46–56.
MLA Eminoğlu, Şehla. “On Non-Archimedean $\mathcal{L}$-Fuzzy Vector Metric Spaces”. Journal of New Theory, no. 45, 2023, pp. 46-56, doi:10.53570/jnt.1351848.
Vancouver Eminoğlu Ş. On Non-Archimedean $\mathcal{L}$-Fuzzy Vector Metric Spaces. JNT. 2023(45):46-5.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).