Research Article
BibTex RIS Cite

Relationship Between a Homoderivation and a Semi-Derivation

Year 2024, Issue: 47, 28 - 38, 30.06.2024
https://doi.org/10.53570/jnt.1467690

Abstract

Let $\wp$ be a ring. It is shown that if an additive mapping $\vartheta$ is a zero-power valued on $\wp$, then $\alpha:\wp\rightarrow\wp$ such that $\alpha=\vartheta+1$ is a bijective mapping of $\wp.$ The main aim of this study is to prove that $\vartheta$ is a homoderivation of $\wp$ if and only if $\vartheta:\wp\rightarrow\wp$ such that $\vartheta=\alpha-1$ is a semi-derivation associated with $\alpha$, where $\alpha:\wp\rightarrow\wp$ is a homomorphism of $\wp.$ Moreover, if $\vartheta$ is a zero-power valued homoderivation on $\wp,$ then $\vartheta$ is a semi-derivation associated with $\alpha$, where $\alpha :\wp\rightarrow\wp$ is an automorphism of $\wp$ such that $\alpha=\vartheta+1$.

References

  • M. M. El Sofy Aly, Rings with some kinds of mappings, Master's Thesis Cairo University (2000) Cairo.
  • J. C. Chang, On semi-derivations of prime rings, Chinese Journal of Mathematics 12 (4) (1984) 255-262.
  • H. E. Bell, W. S. Martindale, Semiderivations and commutativity in prime rings, Canadian Mathematical Bulletin 31 (4) (1988) 500-508.
  • M. Bresar, Semiderivations of prime rings, Proceedings of the American Mathematical Society 108 (4) (1990) 859-860.
  • C. L. Chuang, On the structure of semiderivations in prime rings, Proceedings of the American Mathematical Society 108 (4) (1990) 867-869.
  • E. Güven, Commutativity of semi-derivative prime rings, Indian Journal of Pure and Applied Mathematics 4 (2023) 1-8.
  • E. Sögütcü, A characterization of semiprime rings with homoderivations, Journal of New Theory 42 (2023) 14 28.
  • A. Melaibari, N. Muthana, A. El-Kenani, Centrally-extended homoderivations on rings}, Gulf Journal of Mathematics 4 (2) (2016) 62-70.
  • A. Engin, N. Aydın, Homoderivations in prime rings, Journal of New Theory 43 (2023) 23-34.
  • E. Güven, Homoderivations and their impact on Lie ideals in prime rings, Natural and Applied Sciences Journal 6 (2) (2023) 41-48.
  • A. Sarikaya, Ö. Gölbaşı , Results on Lie ideals of prime rings with homoderivations, Extracta Mathematicae 38 (2) (2023) 125-137.
  • I. N. Herstein, A note on derivations II, Canadian Mathematical Bulletin 22 (4) (1979) 509-511.
  • J. Bergen, Derivations in prime rings, Canadian Mathematical Bulletin 26 (3) (1983) 267-270.
  • E. C. Posner, Derivations in prime rings, American Mathematical Society 8 (6) (1957) 1093-1100.
Year 2024, Issue: 47, 28 - 38, 30.06.2024
https://doi.org/10.53570/jnt.1467690

Abstract

References

  • M. M. El Sofy Aly, Rings with some kinds of mappings, Master's Thesis Cairo University (2000) Cairo.
  • J. C. Chang, On semi-derivations of prime rings, Chinese Journal of Mathematics 12 (4) (1984) 255-262.
  • H. E. Bell, W. S. Martindale, Semiderivations and commutativity in prime rings, Canadian Mathematical Bulletin 31 (4) (1988) 500-508.
  • M. Bresar, Semiderivations of prime rings, Proceedings of the American Mathematical Society 108 (4) (1990) 859-860.
  • C. L. Chuang, On the structure of semiderivations in prime rings, Proceedings of the American Mathematical Society 108 (4) (1990) 867-869.
  • E. Güven, Commutativity of semi-derivative prime rings, Indian Journal of Pure and Applied Mathematics 4 (2023) 1-8.
  • E. Sögütcü, A characterization of semiprime rings with homoderivations, Journal of New Theory 42 (2023) 14 28.
  • A. Melaibari, N. Muthana, A. El-Kenani, Centrally-extended homoderivations on rings}, Gulf Journal of Mathematics 4 (2) (2016) 62-70.
  • A. Engin, N. Aydın, Homoderivations in prime rings, Journal of New Theory 43 (2023) 23-34.
  • E. Güven, Homoderivations and their impact on Lie ideals in prime rings, Natural and Applied Sciences Journal 6 (2) (2023) 41-48.
  • A. Sarikaya, Ö. Gölbaşı , Results on Lie ideals of prime rings with homoderivations, Extracta Mathematicae 38 (2) (2023) 125-137.
  • I. N. Herstein, A note on derivations II, Canadian Mathematical Bulletin 22 (4) (1979) 509-511.
  • J. Bergen, Derivations in prime rings, Canadian Mathematical Bulletin 26 (3) (1983) 267-270.
  • E. C. Posner, Derivations in prime rings, American Mathematical Society 8 (6) (1957) 1093-1100.
There are 14 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Selin Türkmen 0000-0002-6646-6079

Publication Date June 30, 2024
Submission Date April 12, 2024
Acceptance Date June 26, 2024
Published in Issue Year 2024 Issue: 47

Cite

APA Türkmen, S. (2024). Relationship Between a Homoderivation and a Semi-Derivation. Journal of New Theory(47), 28-38. https://doi.org/10.53570/jnt.1467690
AMA Türkmen S. Relationship Between a Homoderivation and a Semi-Derivation. JNT. June 2024;(47):28-38. doi:10.53570/jnt.1467690
Chicago Türkmen, Selin. “Relationship Between a Homoderivation and a Semi-Derivation”. Journal of New Theory, no. 47 (June 2024): 28-38. https://doi.org/10.53570/jnt.1467690.
EndNote Türkmen S (June 1, 2024) Relationship Between a Homoderivation and a Semi-Derivation. Journal of New Theory 47 28–38.
IEEE S. Türkmen, “Relationship Between a Homoderivation and a Semi-Derivation”, JNT, no. 47, pp. 28–38, June 2024, doi: 10.53570/jnt.1467690.
ISNAD Türkmen, Selin. “Relationship Between a Homoderivation and a Semi-Derivation”. Journal of New Theory 47 (June 2024), 28-38. https://doi.org/10.53570/jnt.1467690.
JAMA Türkmen S. Relationship Between a Homoderivation and a Semi-Derivation. JNT. 2024;:28–38.
MLA Türkmen, Selin. “Relationship Between a Homoderivation and a Semi-Derivation”. Journal of New Theory, no. 47, 2024, pp. 28-38, doi:10.53570/jnt.1467690.
Vancouver Türkmen S. Relationship Between a Homoderivation and a Semi-Derivation. JNT. 2024(47):28-3.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).