Research Article
BibTex RIS Cite

Bi-$f$-Harmonic Legendre Curves on $(\alpha,\beta)$-Trans-Sasakian Generalized Sasakian Space Forms

Year 2024, Issue: 48, 24 - 39, 30.09.2024
https://doi.org/10.53570/jnt.1508392

Abstract

In this study, we consider bi-$f$-harmonic Legendre curves on $(\alpha,\beta)$-trans-Sasakian generalized Sasakian space form. We provide the necessary and sufficient conditions for a Legendre curve to be bi-$f$-harmonic on $(\alpha,\beta)$-trans-Sasakian generalized Sasakian space form without any restrictions by a main theorem. Afterward, we investigate these conditions under nine different cases. As a result of these investigations, we obtain the original theorems and corollaries as well as the nonexistence theorems. We perform these investigations according to the $\rho_{2}$ and $\rho_{3}$ functions from the curvature tensor of the $(\alpha,\beta)$-trans-Sasakian generalized Sasakian space form, the curvature and torsion of the bi-$f$-harmonic Legendre curve, and finally, the positions of the basis vectors relative to each other.

References

  • J. Eells, J. H. Sampson, Harmonic mappings of Riemannian manifolds, American Journal of Mathematics 86 (1) (1964) 109-160.
  • G. Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Annals of Mathematics, Series A 7 (1986) 130-144.
  • A. Lichnerowicz, Applications harmoniques et varietes Kahleriennes, Conferenza Tenuta il 14 Aprile Rendiconti del Seminario Matematico e Fisico di Milano 39 (1969) 186-195.
  • W. J. Lu, On $f$-bi-harmonic maps and bi-$f$-harmonic maps between Riemannian manifolds, Science China Mathematics 58 (2015) 1483-1498.
  • S. Ouakkas, R. Nasri, M. Djaa, On the $f$-harmonic and $f$-biharmonic maps, Journal of Geometry and Topology 10 (1) (2010) 11-27.
  • S. Yüksel Perktaş, A. M. Blaga, F. E. Erdoğan, B. E. Acet, Bi-$f$-harmonic curves and hypersurfaces, Filomat 33 (16) (2019) 5167-5180.
  • P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian space-forms, Israel Journal of Mathematics 141 (2004) 157-183.
  • A. Sarkar, S. K. Hui, M. Sen, A study on Legendre curves in 3-dimensional trans-Sasakian manifolds, Lobachevskii Journal of Mathematics 35 (1) (2014) 11-18.
  • D. Fetcu, Biharmonic Legendre curves in Sasakian space forms, Journal of the Korean Mathematical Society 45 (2008) 393-404.
  • C. Özgür, Ş. Güvenç, On some classes of biharmonic Legendre curves in generalized Sasakian space forms, Collectanea Mathematica 65 (2014) 203-218.
  • Ş. Güvenç, C. Özgür, On the characterizations of f-biharmonic Legendre curves in Sasakian space forms, Filomat 31 (3) (2017) 639-648.
  • Ş. N. Bozdağ, F. E. Erdoğan, On $f$-biharmonic and bi-$f$-harmonic Frenet Legendre curves, International Journal of Maps in Mathematics 5 (2) (2022) 112-138.
  • Ş. N. Bozdağ, On bi-$f$-harmonic Legendre curves in Sasakian space forms, Fundamentals of Contemporary Mathematical Sciences 3 (2) (2022) 132-145.
  • F. E. Erdoğan, Ş. N. Bozdağ, Some types of $f$-biharmonic and bi-$f$-harmonic curves, Hacettepe Journal of Mathematics and Statistics 51 (3) (2022) 646-657.
  • D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhauser, Boston, 2002.
  • J. A. Oubina, New classes of almost contact metric structures, Publicationes Mathematicae Debrecen 32 (1985) 187-193.
  • U. C. De, M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Mathematical Journal 43 (2003) 247-255.
  • J. C. Marrero, The local structure of trans-Sasakian manifolds, Annali di Matematica Pura ed Applicata 162 (1992) 77-86.
  • J. Roth, A. Upadhyay, f-Biharmonic submanifolds of generalized space forms, Results in Mathematics 75 (2020) Article Number 20 25 pages.
  • P. Alegre, A. Carriazo, Structures on generalized Sasakian-space-forms, Differential Geometry and its Applications 26 (6) (2008) 656-666.
  • C. Özgür, M. M. Tripathi, On Legendre curves in $\alpha$-Sasakian manifolds, Bulletin of the Malaysian Mathematical Sciences Society 31 (1) (2008) 91-96.
Year 2024, Issue: 48, 24 - 39, 30.09.2024
https://doi.org/10.53570/jnt.1508392

Abstract

References

  • J. Eells, J. H. Sampson, Harmonic mappings of Riemannian manifolds, American Journal of Mathematics 86 (1) (1964) 109-160.
  • G. Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Annals of Mathematics, Series A 7 (1986) 130-144.
  • A. Lichnerowicz, Applications harmoniques et varietes Kahleriennes, Conferenza Tenuta il 14 Aprile Rendiconti del Seminario Matematico e Fisico di Milano 39 (1969) 186-195.
  • W. J. Lu, On $f$-bi-harmonic maps and bi-$f$-harmonic maps between Riemannian manifolds, Science China Mathematics 58 (2015) 1483-1498.
  • S. Ouakkas, R. Nasri, M. Djaa, On the $f$-harmonic and $f$-biharmonic maps, Journal of Geometry and Topology 10 (1) (2010) 11-27.
  • S. Yüksel Perktaş, A. M. Blaga, F. E. Erdoğan, B. E. Acet, Bi-$f$-harmonic curves and hypersurfaces, Filomat 33 (16) (2019) 5167-5180.
  • P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian space-forms, Israel Journal of Mathematics 141 (2004) 157-183.
  • A. Sarkar, S. K. Hui, M. Sen, A study on Legendre curves in 3-dimensional trans-Sasakian manifolds, Lobachevskii Journal of Mathematics 35 (1) (2014) 11-18.
  • D. Fetcu, Biharmonic Legendre curves in Sasakian space forms, Journal of the Korean Mathematical Society 45 (2008) 393-404.
  • C. Özgür, Ş. Güvenç, On some classes of biharmonic Legendre curves in generalized Sasakian space forms, Collectanea Mathematica 65 (2014) 203-218.
  • Ş. Güvenç, C. Özgür, On the characterizations of f-biharmonic Legendre curves in Sasakian space forms, Filomat 31 (3) (2017) 639-648.
  • Ş. N. Bozdağ, F. E. Erdoğan, On $f$-biharmonic and bi-$f$-harmonic Frenet Legendre curves, International Journal of Maps in Mathematics 5 (2) (2022) 112-138.
  • Ş. N. Bozdağ, On bi-$f$-harmonic Legendre curves in Sasakian space forms, Fundamentals of Contemporary Mathematical Sciences 3 (2) (2022) 132-145.
  • F. E. Erdoğan, Ş. N. Bozdağ, Some types of $f$-biharmonic and bi-$f$-harmonic curves, Hacettepe Journal of Mathematics and Statistics 51 (3) (2022) 646-657.
  • D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhauser, Boston, 2002.
  • J. A. Oubina, New classes of almost contact metric structures, Publicationes Mathematicae Debrecen 32 (1985) 187-193.
  • U. C. De, M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Mathematical Journal 43 (2003) 247-255.
  • J. C. Marrero, The local structure of trans-Sasakian manifolds, Annali di Matematica Pura ed Applicata 162 (1992) 77-86.
  • J. Roth, A. Upadhyay, f-Biharmonic submanifolds of generalized space forms, Results in Mathematics 75 (2020) Article Number 20 25 pages.
  • P. Alegre, A. Carriazo, Structures on generalized Sasakian-space-forms, Differential Geometry and its Applications 26 (6) (2008) 656-666.
  • C. Özgür, M. M. Tripathi, On Legendre curves in $\alpha$-Sasakian manifolds, Bulletin of the Malaysian Mathematical Sciences Society 31 (1) (2008) 91-96.
There are 21 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Şerife Nur Bozdağ 0000-0002-9651-7834

Selcen Yüksel Perktaş 0000-0002-8848-0621

Feyza Esra Erdoğan 0000-0003-0568-7510

Publication Date September 30, 2024
Submission Date July 1, 2024
Acceptance Date September 14, 2024
Published in Issue Year 2024 Issue: 48

Cite

APA Bozdağ, Ş. N., Yüksel Perktaş, S., & Erdoğan, F. E. (2024). Bi-$f$-Harmonic Legendre Curves on $(\alpha,\beta)$-Trans-Sasakian Generalized Sasakian Space Forms. Journal of New Theory(48), 24-39. https://doi.org/10.53570/jnt.1508392
AMA Bozdağ ŞN, Yüksel Perktaş S, Erdoğan FE. Bi-$f$-Harmonic Legendre Curves on $(\alpha,\beta)$-Trans-Sasakian Generalized Sasakian Space Forms. JNT. September 2024;(48):24-39. doi:10.53570/jnt.1508392
Chicago Bozdağ, Şerife Nur, Selcen Yüksel Perktaş, and Feyza Esra Erdoğan. “Bi-$f$-Harmonic Legendre Curves on $(\alpha,\beta)$-Trans-Sasakian Generalized Sasakian Space Forms”. Journal of New Theory, no. 48 (September 2024): 24-39. https://doi.org/10.53570/jnt.1508392.
EndNote Bozdağ ŞN, Yüksel Perktaş S, Erdoğan FE (September 1, 2024) Bi-$f$-Harmonic Legendre Curves on $(\alpha,\beta)$-Trans-Sasakian Generalized Sasakian Space Forms. Journal of New Theory 48 24–39.
IEEE Ş. N. Bozdağ, S. Yüksel Perktaş, and F. E. Erdoğan, “Bi-$f$-Harmonic Legendre Curves on $(\alpha,\beta)$-Trans-Sasakian Generalized Sasakian Space Forms”, JNT, no. 48, pp. 24–39, September 2024, doi: 10.53570/jnt.1508392.
ISNAD Bozdağ, Şerife Nur et al. “Bi-$f$-Harmonic Legendre Curves on $(\alpha,\beta)$-Trans-Sasakian Generalized Sasakian Space Forms”. Journal of New Theory 48 (September 2024), 24-39. https://doi.org/10.53570/jnt.1508392.
JAMA Bozdağ ŞN, Yüksel Perktaş S, Erdoğan FE. Bi-$f$-Harmonic Legendre Curves on $(\alpha,\beta)$-Trans-Sasakian Generalized Sasakian Space Forms. JNT. 2024;:24–39.
MLA Bozdağ, Şerife Nur et al. “Bi-$f$-Harmonic Legendre Curves on $(\alpha,\beta)$-Trans-Sasakian Generalized Sasakian Space Forms”. Journal of New Theory, no. 48, 2024, pp. 24-39, doi:10.53570/jnt.1508392.
Vancouver Bozdağ ŞN, Yüksel Perktaş S, Erdoğan FE. Bi-$f$-Harmonic Legendre Curves on $(\alpha,\beta)$-Trans-Sasakian Generalized Sasakian Space Forms. JNT. 2024(48):24-39.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).