Research Article
BibTex RIS Cite

Computation of the Golden Matrix Exponential Functions of Special Matrices

Year 2024, Issue: 48, 61 - 77, 30.09.2024
https://doi.org/10.53570/jnt.1523798

Abstract

Computation of the matrix exponential functions is important in solving various scientific and engineering problems due to their active role in solving differential equations. Accurate and effective computation of these functions determines the success of mathematical analysis and practical applications. Therefore, studying and understanding matrix exponential functions is the key to developing mathematical and engineering sciences. In the present paper, we aim to compute the values of the $1$st and $2$nd type Golden matrix exponential functions for some special matrices. We present the similarities and differences with the value of the well-known matrix exponential function for the same special matrices.

References

  • E. Defez, J. Sastre, J. J. Ibanez, P. A. Ruiz, Computing matrix functions solving coupled differential models, Mathematical and Computer Modelling 50 (5-6) (2009) 831-839.
  • E. Defez, J. Sastre, J. J. Ibanez, P. A. Ruiz, Computing matrix functions arising in engineering models with orthogonal matrix polynomials, Mathematical and Computer Modelling 57 (7-8) (2013) 1738-1743.
  • A. H. Al-Mohy, N. J. Higham, A new scaling and squaring algorithm for the matrix exponential, SIAM Journal on Matrix Analysis and Applications 31 (3) (2009) 970-989.
  • G. I. Hargreaves, N. J. Higham, Efficient algorithms for the matrix cosine and sine, Numerical Algorithms 40 (2005) 383-400.
  • J. Sastre, J. J. Ibanez, P. A. Ruiz, E. Defez, Efficient computation of the matrix cosine, Applied Mathematics and Computation 219 (2013) 7575-7585.
  • M. Bahsi, S. Solak, On the hyperbolic Fibonacci matrix functions, TWMS Journal of Applied and Engineering Mathematics 8 (2) (2018) 454-465.
  • N. J. Higham, M. I. Smith, Computing the matrix cosine, Numerical Algorithms 34 (2003) 13-16.
  • N. J. Higham, Functions of matrices: Theory and computation, Society for Industrial and Applied Mathematics, Philadelphia, 2008.
  • R. Bronson, Matrix methods: An introduction, Gulf Professional Publishing, 1991.
  • L. Jódar, E. Navarro, A. E. Posso, M. C. Casabán, Constructive solution of strongly coupled continuous hyperbolic mixed problems, Applied Numerical Mathematics 47 (3-4) (2003) 477-492.
  • G. Moore, Orthogonal polynomial expansions for the matrix exponential, Linear Algebra and Its Applications 435 (2) (2011) 537-559.
  • M. Bahsi, E. Ö. Mersin, On the hyperbolic Horadam matrix functions, Hacettepe Journal of Mathematics and Statistics 51 (6) (2022) 1550-1562.
  • F. Ding, Computation of matrix exponentials of special matrices, Applied Mathematics and Computation 223 (2013) 311-326.
  • L. Jódar, E. Navarro, A. E. Posso, M. C. Casabán, Constructive solution of strongly coupled continuous hyperbolic mixed problems, Applied Numerical Mathematics, 47 (3-4) (2003) 477-492.
  • E. Defez, L. Jodar, Some applications of Hermite matrix polynomials series expansions, Journal of Computational and Applied Mathematics 99 (1998) 105-117.
  • E. Defez, J. Sastre, J. J. Ibanez, J. Peinado, Solving engineering models using hyperbolic matrix functions, Applied Mathematical Modelling 40 (4) (2016) 2837-2844.
  • T. Koshy, Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts Monographs, and Tracts, New York, 2001.
  • O. K. Pashaev, S. Nalci, Golden quantum oscillator and Binet-Fibonacci calculus, Journal of Physics A: Mathematical and Theoretical 45 (1) (2011) 015303 23 pages.
  • M. Özvatan, Generalized golden-Fibonacci calculus and applications, Master's Thesis İzmir Institute of Technology (2018) İzmir.
  • O. K. Pashaev, Quantum calculus of Fibonacci divisors and infinite hierarchy of Bosonic-Fermionic Golden quantum oscillators, International Journal of Geometric Methods in Modern Physics 18 (05) (2021) 2150075 40 pages.
  • E. Ö. Mersin, M. Bahsi, The golden Fibonacci matrix calculus, in: Y. Zeren, M, Kirişçi, A. C. Çevikel (Eds.), 7th International HYBRID Conference on Mathematical Advances and Applications, İstanbul, 2024, p. 73.
Year 2024, Issue: 48, 61 - 77, 30.09.2024
https://doi.org/10.53570/jnt.1523798

Abstract

References

  • E. Defez, J. Sastre, J. J. Ibanez, P. A. Ruiz, Computing matrix functions solving coupled differential models, Mathematical and Computer Modelling 50 (5-6) (2009) 831-839.
  • E. Defez, J. Sastre, J. J. Ibanez, P. A. Ruiz, Computing matrix functions arising in engineering models with orthogonal matrix polynomials, Mathematical and Computer Modelling 57 (7-8) (2013) 1738-1743.
  • A. H. Al-Mohy, N. J. Higham, A new scaling and squaring algorithm for the matrix exponential, SIAM Journal on Matrix Analysis and Applications 31 (3) (2009) 970-989.
  • G. I. Hargreaves, N. J. Higham, Efficient algorithms for the matrix cosine and sine, Numerical Algorithms 40 (2005) 383-400.
  • J. Sastre, J. J. Ibanez, P. A. Ruiz, E. Defez, Efficient computation of the matrix cosine, Applied Mathematics and Computation 219 (2013) 7575-7585.
  • M. Bahsi, S. Solak, On the hyperbolic Fibonacci matrix functions, TWMS Journal of Applied and Engineering Mathematics 8 (2) (2018) 454-465.
  • N. J. Higham, M. I. Smith, Computing the matrix cosine, Numerical Algorithms 34 (2003) 13-16.
  • N. J. Higham, Functions of matrices: Theory and computation, Society for Industrial and Applied Mathematics, Philadelphia, 2008.
  • R. Bronson, Matrix methods: An introduction, Gulf Professional Publishing, 1991.
  • L. Jódar, E. Navarro, A. E. Posso, M. C. Casabán, Constructive solution of strongly coupled continuous hyperbolic mixed problems, Applied Numerical Mathematics 47 (3-4) (2003) 477-492.
  • G. Moore, Orthogonal polynomial expansions for the matrix exponential, Linear Algebra and Its Applications 435 (2) (2011) 537-559.
  • M. Bahsi, E. Ö. Mersin, On the hyperbolic Horadam matrix functions, Hacettepe Journal of Mathematics and Statistics 51 (6) (2022) 1550-1562.
  • F. Ding, Computation of matrix exponentials of special matrices, Applied Mathematics and Computation 223 (2013) 311-326.
  • L. Jódar, E. Navarro, A. E. Posso, M. C. Casabán, Constructive solution of strongly coupled continuous hyperbolic mixed problems, Applied Numerical Mathematics, 47 (3-4) (2003) 477-492.
  • E. Defez, L. Jodar, Some applications of Hermite matrix polynomials series expansions, Journal of Computational and Applied Mathematics 99 (1998) 105-117.
  • E. Defez, J. Sastre, J. J. Ibanez, J. Peinado, Solving engineering models using hyperbolic matrix functions, Applied Mathematical Modelling 40 (4) (2016) 2837-2844.
  • T. Koshy, Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts Monographs, and Tracts, New York, 2001.
  • O. K. Pashaev, S. Nalci, Golden quantum oscillator and Binet-Fibonacci calculus, Journal of Physics A: Mathematical and Theoretical 45 (1) (2011) 015303 23 pages.
  • M. Özvatan, Generalized golden-Fibonacci calculus and applications, Master's Thesis İzmir Institute of Technology (2018) İzmir.
  • O. K. Pashaev, Quantum calculus of Fibonacci divisors and infinite hierarchy of Bosonic-Fermionic Golden quantum oscillators, International Journal of Geometric Methods in Modern Physics 18 (05) (2021) 2150075 40 pages.
  • E. Ö. Mersin, M. Bahsi, The golden Fibonacci matrix calculus, in: Y. Zeren, M, Kirişçi, A. C. Çevikel (Eds.), 7th International HYBRID Conference on Mathematical Advances and Applications, İstanbul, 2024, p. 73.
There are 21 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Efruz Özlem Mersin 0000-0001-6260-9063

Mustafa Bahşi 0000-0002-6356-6592

Publication Date September 30, 2024
Submission Date July 28, 2024
Acceptance Date September 25, 2024
Published in Issue Year 2024 Issue: 48

Cite

APA Mersin, E. Ö., & Bahşi, M. (2024). Computation of the Golden Matrix Exponential Functions of Special Matrices. Journal of New Theory(48), 61-77. https://doi.org/10.53570/jnt.1523798
AMA Mersin EÖ, Bahşi M. Computation of the Golden Matrix Exponential Functions of Special Matrices. JNT. September 2024;(48):61-77. doi:10.53570/jnt.1523798
Chicago Mersin, Efruz Özlem, and Mustafa Bahşi. “Computation of the Golden Matrix Exponential Functions of Special Matrices”. Journal of New Theory, no. 48 (September 2024): 61-77. https://doi.org/10.53570/jnt.1523798.
EndNote Mersin EÖ, Bahşi M (September 1, 2024) Computation of the Golden Matrix Exponential Functions of Special Matrices. Journal of New Theory 48 61–77.
IEEE E. Ö. Mersin and M. Bahşi, “Computation of the Golden Matrix Exponential Functions of Special Matrices”, JNT, no. 48, pp. 61–77, September 2024, doi: 10.53570/jnt.1523798.
ISNAD Mersin, Efruz Özlem - Bahşi, Mustafa. “Computation of the Golden Matrix Exponential Functions of Special Matrices”. Journal of New Theory 48 (September 2024), 61-77. https://doi.org/10.53570/jnt.1523798.
JAMA Mersin EÖ, Bahşi M. Computation of the Golden Matrix Exponential Functions of Special Matrices. JNT. 2024;:61–77.
MLA Mersin, Efruz Özlem and Mustafa Bahşi. “Computation of the Golden Matrix Exponential Functions of Special Matrices”. Journal of New Theory, no. 48, 2024, pp. 61-77, doi:10.53570/jnt.1523798.
Vancouver Mersin EÖ, Bahşi M. Computation of the Golden Matrix Exponential Functions of Special Matrices. JNT. 2024(48):61-77.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).