Research Article
BibTex RIS Cite

Domination Scattering Number in Graphs

Year 2024, Issue: 49, 53 - 61, 31.12.2024
https://doi.org/10.53570/jnt.1563823

Abstract

Scattering number measures the stability of a graph by determining how well vertices are spread throughout the graph. However, it may not always be distinctive for different graphs, especially when comparing the same scattering numbers. In this study, we aim to provide a more nuanced and sensitive measure of stability for graphs by introducing domination scattering numbers, a new measure of graph stability. This parameter likely captures additional structural characteristics or dynamics within the graph that contribute to its stability or resilience. Moreover, we investigate the domination scattering numbers of the graphs $P_n$, $C_n$, $K_{1,n}$, $K_{m,n}$, and $P_n\times C_3$.

References

  • C. A. Barefoot, R. Entringer, H. Swart, Vulnerability in graphs -- A comparative survey, Journal of Combinatorial Mathematics and Combinatorial Computing 1 (1987) 13-22.
  • Z. N. Berberler, A. Aytaç, Node and link vulnerability in complete multipartite networks, International Journal of Foundations of Computer Science 35 (4) (2024) 375-385.
  • S. Zhang, Z. Wang, Scattering number in graphs, Networks 37 (2001) 102-106.
  • W. Chen, S. Renqian, Q. Ren, X. Li, Tight toughness, isolated toughness and binding number bounds for the path-cycle factors, International Journal of Computer Mathematics: Computer Systems Theory 8 (4) (2023) 235-241.
  • H. Chen, J. Li, l-connectivity, integrity, tenacity, toughness and eigenvalues of graphs, Bulletin of the Malaysian Mathematical Sciences Society 45 (6) (2022) 3307-3320.
  • F. Harary, Graph theory, CRC Press, Boca Raton, 2018.
  • H. A. Jung, On a class of posets and the corresponding comparability graphs, Journal of Combinatorial Theory Series B 24 (2) (1978) 125-133.
  • Ş. Onur, G. B. Turan, Geodetic domination integrity of thorny graphs, Journal of New Theory (46) (2024) 99-109.
  • Y. Sun, C. Wu, X. Zhang, Z. Zhang, Computation and algorithm for the minimum k-edge-connectivity of graphs, Journal of Combinatorial Optimization 44 (3) (2022) 1741-1752.
  • L. Vasu, R. Sundareswaran, R. Sujatha, Domination weak integrity in graphs, Bulletin of the International Mathematical Virtual Institute 10 (1) (2020) 181-187.
  • S. Zhang, S. Peng, Relationships between scattering number and other vulnerability parameters, International Journal of Computer Mathematics 81 (3) (2004) 291-298.
  • J. Xu, Theory and application of graphs, Springer, New York, 2003.
  • S. Varghese, B. Babu, An overview on graph products, International Journal of Science and Research Archive 10 (1) (2023) 966-971.
  • B. Kaval, A. Kırlangıç, Scattering number and cartesian product of graphs, Bulletin of the International Mathematical Virtual Institute 8 (2018) 401-412.
  • A. Kırlangıç,A measure of graph vulnerability: Scattering number, International Journal of Mathematics and Mathematical Sciences 30 (1) (2002) 1-8.
  • L. Markenzon, C. F. Waga, The scattering number of strictly chordal graphs: Linear time determination, Graphs and Combinatorics 38 (3) (2022) 102 14 pages.
  • J. Wang, Y. Sun, Scattering number of digraphs, Applied Mathematics and Computation 466 (2024) Article ID 128475 6 pages.
  • E. Aslan, Measure of graphs vulnerability: Edge scattering number, Bulletin of the International Mathematical Virtual Institute 4 (2014) 53-60.
  • Ö. K. Kükçü, E. Aslan, A comparison between edge neighbor rupture degree and edge scattering number in graphs, International Journal of Foundations of Computer Science 29 (7) (2018) 1119-1142.
  • R. Sundareswaran, V. Swaminathan, Domination integrity in trees, Bulletin of the International Mathematical Virtual Institute 2 (2012) 153-161.
  • P. Pavlic, J. Zerovnik, A note on the domination number of the cartesian products of paths and cycles, Kragujevac Journal of Mathematics 37 (2) (2013) 275-285.
Year 2024, Issue: 49, 53 - 61, 31.12.2024
https://doi.org/10.53570/jnt.1563823

Abstract

References

  • C. A. Barefoot, R. Entringer, H. Swart, Vulnerability in graphs -- A comparative survey, Journal of Combinatorial Mathematics and Combinatorial Computing 1 (1987) 13-22.
  • Z. N. Berberler, A. Aytaç, Node and link vulnerability in complete multipartite networks, International Journal of Foundations of Computer Science 35 (4) (2024) 375-385.
  • S. Zhang, Z. Wang, Scattering number in graphs, Networks 37 (2001) 102-106.
  • W. Chen, S. Renqian, Q. Ren, X. Li, Tight toughness, isolated toughness and binding number bounds for the path-cycle factors, International Journal of Computer Mathematics: Computer Systems Theory 8 (4) (2023) 235-241.
  • H. Chen, J. Li, l-connectivity, integrity, tenacity, toughness and eigenvalues of graphs, Bulletin of the Malaysian Mathematical Sciences Society 45 (6) (2022) 3307-3320.
  • F. Harary, Graph theory, CRC Press, Boca Raton, 2018.
  • H. A. Jung, On a class of posets and the corresponding comparability graphs, Journal of Combinatorial Theory Series B 24 (2) (1978) 125-133.
  • Ş. Onur, G. B. Turan, Geodetic domination integrity of thorny graphs, Journal of New Theory (46) (2024) 99-109.
  • Y. Sun, C. Wu, X. Zhang, Z. Zhang, Computation and algorithm for the minimum k-edge-connectivity of graphs, Journal of Combinatorial Optimization 44 (3) (2022) 1741-1752.
  • L. Vasu, R. Sundareswaran, R. Sujatha, Domination weak integrity in graphs, Bulletin of the International Mathematical Virtual Institute 10 (1) (2020) 181-187.
  • S. Zhang, S. Peng, Relationships between scattering number and other vulnerability parameters, International Journal of Computer Mathematics 81 (3) (2004) 291-298.
  • J. Xu, Theory and application of graphs, Springer, New York, 2003.
  • S. Varghese, B. Babu, An overview on graph products, International Journal of Science and Research Archive 10 (1) (2023) 966-971.
  • B. Kaval, A. Kırlangıç, Scattering number and cartesian product of graphs, Bulletin of the International Mathematical Virtual Institute 8 (2018) 401-412.
  • A. Kırlangıç,A measure of graph vulnerability: Scattering number, International Journal of Mathematics and Mathematical Sciences 30 (1) (2002) 1-8.
  • L. Markenzon, C. F. Waga, The scattering number of strictly chordal graphs: Linear time determination, Graphs and Combinatorics 38 (3) (2022) 102 14 pages.
  • J. Wang, Y. Sun, Scattering number of digraphs, Applied Mathematics and Computation 466 (2024) Article ID 128475 6 pages.
  • E. Aslan, Measure of graphs vulnerability: Edge scattering number, Bulletin of the International Mathematical Virtual Institute 4 (2014) 53-60.
  • Ö. K. Kükçü, E. Aslan, A comparison between edge neighbor rupture degree and edge scattering number in graphs, International Journal of Foundations of Computer Science 29 (7) (2018) 1119-1142.
  • R. Sundareswaran, V. Swaminathan, Domination integrity in trees, Bulletin of the International Mathematical Virtual Institute 2 (2012) 153-161.
  • P. Pavlic, J. Zerovnik, A note on the domination number of the cartesian products of paths and cycles, Kragujevac Journal of Mathematics 37 (2) (2013) 275-285.
There are 21 citations in total.

Details

Primary Language English
Subjects Combinatorics and Discrete Mathematics (Excl. Physical Combinatorics)
Journal Section Research Article
Authors

Burak Kaval 0000-0001-8264-2338

Alpay Kırlangıç 0000-0001-8009-7209

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date October 9, 2024
Acceptance Date November 21, 2024
Published in Issue Year 2024 Issue: 49

Cite

APA Kaval, B., & Kırlangıç, A. (2024). Domination Scattering Number in Graphs. Journal of New Theory(49), 53-61. https://doi.org/10.53570/jnt.1563823
AMA Kaval B, Kırlangıç A. Domination Scattering Number in Graphs. JNT. December 2024;(49):53-61. doi:10.53570/jnt.1563823
Chicago Kaval, Burak, and Alpay Kırlangıç. “Domination Scattering Number in Graphs”. Journal of New Theory, no. 49 (December 2024): 53-61. https://doi.org/10.53570/jnt.1563823.
EndNote Kaval B, Kırlangıç A (December 1, 2024) Domination Scattering Number in Graphs. Journal of New Theory 49 53–61.
IEEE B. Kaval and A. Kırlangıç, “Domination Scattering Number in Graphs”, JNT, no. 49, pp. 53–61, December 2024, doi: 10.53570/jnt.1563823.
ISNAD Kaval, Burak - Kırlangıç, Alpay. “Domination Scattering Number in Graphs”. Journal of New Theory 49 (December 2024), 53-61. https://doi.org/10.53570/jnt.1563823.
JAMA Kaval B, Kırlangıç A. Domination Scattering Number in Graphs. JNT. 2024;:53–61.
MLA Kaval, Burak and Alpay Kırlangıç. “Domination Scattering Number in Graphs”. Journal of New Theory, no. 49, 2024, pp. 53-61, doi:10.53570/jnt.1563823.
Vancouver Kaval B, Kırlangıç A. Domination Scattering Number in Graphs. JNT. 2024(49):53-61.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).