Research Article
BibTex RIS Cite

A Generalization of Source of Semiprimeness

Year 2024, Issue: 49, 62 - 68, 31.12.2024
https://doi.org/10.53570/jnt.1581076

Abstract

This paper characterizes the semigroup ideal $\mathcal{L}_{R}^{n}(I)$ of a ring $R$, where $I$ is an ideal of $R$, defined by $\mathcal{L}_{R}^{0}(I)=I$ and $\mathcal{L}_{R}^{n}(I)=\{a\in R \mid aRa\subseteq \mathcal{L}_{R}^{n-1}(I)\}$, for all $n\in \mathbb{Z}^+$, the set of all the positive integers. Moreover, it studies the basic properties of the set $\mathcal{L}_{R}^{n}(I)$ and defines $n$-prime ideals, $n$-semiprime ideals, $n$-prime rings, and $n$-semiprime rings. This study also investigates relationships between the sets $\mathcal{L}_{R}(I)$ and $\mathcal{L}_{R}^{n}(I)$ and exemplifies some of the related properties. It obtains the main results concerning prime rings and prime ideals by the properties of the set $\mathcal{L}_{R}^{n}(I)$.

References

  • G. Calugareanu, A new class of semiprime rings, Houston Journal of Mathematics 44 (1) (2018) 21-30.
  • A. Hamed, A. Malek, S-prime ideals of a commutative ring, Contributions to Algebra and Geometry 61 (3) (2020) 533-542.
  • A. Tarizadeh, M. Aghajani, On purely-prime ideals with applications, Communications in Algebra 49 (2) (2021) 824-835.
  • D. D. Anderson, E. Smith, Weakly prime ideals, Houston Journal of Mathematics 29 (4) (2003) 831-840.
  • K. K. Pathak, J. Goswami, S-Semiprime ideals and weakly S-semiprime ideals of rings, Palestine Journal of Mathematics 12 (4) (2023) 115-124.
  • D. D. Anderson, M. Bataineh, Generalizations of prime ideals, Communications in Algebra 36 (2) (2008) 686-696.
  • A. Abouhalaka, A note on weakly semiprime ideals and their relationship to prime radical in noncommutative rings, Journal of Mathematics 2024 (2024) Article ID 9142090 6 pages.
  • A. Badawi, On weakly semiprime ideals of commutative rings, Contributions to Algebra and Geometry 57 (3) (2016) 589-597.
  • C. Beddani, W. Messirdi, 2-prime ideals and their applications, Journal of Algebra and Its Applications 15 (03) (2016) 1650051 11 pages.
  • S. Koc, Ü. Tekir, G. Ulucak, On strongly quasi primary ideals, Bulletin of the Korean Mathematical Society 56 (3) (2019) 729-743.
  • D. D. Anderson, T. Dumitrescu, S-Noetherian rings, Communications in Algebra 30 (9) (2002) 4407-4416.
  • A. Badawi, On 2-absorbing ideals of commutative rings, Bulletin of the Australian Mathematical Society 75 (3) (2007) 417-429.
  • Z. Bilgin, M. L. Reyes, Ü. Tekir, On right S-Noetherian rings and S-Noetherian modules, Communications in Algebra 46 (2) (2018) 863-869.
  • S. M. Bhatwadekar, P. K. Sharma, Unique factorization and birth of almost primes, Communications in Algebra 33 (1) (2005) 43-49.
  • H. Ahmed, H. Sana, S-Noetherian rings of the forms $A[X]$ and $A[[X]]$, Communications in Algebra 43 (9) (2015) 3848-3856.
  • K. Ajaykumar, B. S. Kiranagi, R. Rangarajan, Pullback of Lie algebra and Lie group bundles and their homotopy invariance, Journal of Algebra and Related Topics 8 (1) (2020) 15-26.
  • R. Kumar, On characteristic ideal bundles of a Lie algebra bundle, Journal of Algebra and Related Topics 9 (2) (2021) 23-28.
  • N. Aydın, Ç. Demir, D. Karalarlıoğlu Camcı, The source of semiprimeness of rings, Communications of the Korean Mathematical Society 33 (4) (2018) 1083-1096.
  • D. Karalarlıoğlu Camcı, Source of semiprimeness and multiplicative (generalized) derivations in rings, Doctoral Dissertation Çanakkale Onsekiz Mart University (2017) Çanakkale.
  • N. H. McCoy, The theory of rings, Chelsea Publishing Company, New York, 1973.
  • Y. S. Park, J. P. Kim, Prime and semiprime ideals in semigroups, Kyungpook Mathematical Journal 32 (3) (1992) 629-633.
  • W. M. Boothby, An introduction to differentiable manifolds and Riemannian geometry, 2nd Edition, Academic Press, San Diego, 2002.
Year 2024, Issue: 49, 62 - 68, 31.12.2024
https://doi.org/10.53570/jnt.1581076

Abstract

References

  • G. Calugareanu, A new class of semiprime rings, Houston Journal of Mathematics 44 (1) (2018) 21-30.
  • A. Hamed, A. Malek, S-prime ideals of a commutative ring, Contributions to Algebra and Geometry 61 (3) (2020) 533-542.
  • A. Tarizadeh, M. Aghajani, On purely-prime ideals with applications, Communications in Algebra 49 (2) (2021) 824-835.
  • D. D. Anderson, E. Smith, Weakly prime ideals, Houston Journal of Mathematics 29 (4) (2003) 831-840.
  • K. K. Pathak, J. Goswami, S-Semiprime ideals and weakly S-semiprime ideals of rings, Palestine Journal of Mathematics 12 (4) (2023) 115-124.
  • D. D. Anderson, M. Bataineh, Generalizations of prime ideals, Communications in Algebra 36 (2) (2008) 686-696.
  • A. Abouhalaka, A note on weakly semiprime ideals and their relationship to prime radical in noncommutative rings, Journal of Mathematics 2024 (2024) Article ID 9142090 6 pages.
  • A. Badawi, On weakly semiprime ideals of commutative rings, Contributions to Algebra and Geometry 57 (3) (2016) 589-597.
  • C. Beddani, W. Messirdi, 2-prime ideals and their applications, Journal of Algebra and Its Applications 15 (03) (2016) 1650051 11 pages.
  • S. Koc, Ü. Tekir, G. Ulucak, On strongly quasi primary ideals, Bulletin of the Korean Mathematical Society 56 (3) (2019) 729-743.
  • D. D. Anderson, T. Dumitrescu, S-Noetherian rings, Communications in Algebra 30 (9) (2002) 4407-4416.
  • A. Badawi, On 2-absorbing ideals of commutative rings, Bulletin of the Australian Mathematical Society 75 (3) (2007) 417-429.
  • Z. Bilgin, M. L. Reyes, Ü. Tekir, On right S-Noetherian rings and S-Noetherian modules, Communications in Algebra 46 (2) (2018) 863-869.
  • S. M. Bhatwadekar, P. K. Sharma, Unique factorization and birth of almost primes, Communications in Algebra 33 (1) (2005) 43-49.
  • H. Ahmed, H. Sana, S-Noetherian rings of the forms $A[X]$ and $A[[X]]$, Communications in Algebra 43 (9) (2015) 3848-3856.
  • K. Ajaykumar, B. S. Kiranagi, R. Rangarajan, Pullback of Lie algebra and Lie group bundles and their homotopy invariance, Journal of Algebra and Related Topics 8 (1) (2020) 15-26.
  • R. Kumar, On characteristic ideal bundles of a Lie algebra bundle, Journal of Algebra and Related Topics 9 (2) (2021) 23-28.
  • N. Aydın, Ç. Demir, D. Karalarlıoğlu Camcı, The source of semiprimeness of rings, Communications of the Korean Mathematical Society 33 (4) (2018) 1083-1096.
  • D. Karalarlıoğlu Camcı, Source of semiprimeness and multiplicative (generalized) derivations in rings, Doctoral Dissertation Çanakkale Onsekiz Mart University (2017) Çanakkale.
  • N. H. McCoy, The theory of rings, Chelsea Publishing Company, New York, 1973.
  • Y. S. Park, J. P. Kim, Prime and semiprime ideals in semigroups, Kyungpook Mathematical Journal 32 (3) (1992) 629-633.
  • W. M. Boothby, An introduction to differentiable manifolds and Riemannian geometry, 2nd Edition, Academic Press, San Diego, 2002.
There are 22 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Didem Karalarlıoğlu Camcı 0000-0002-8413-3753

Didem Yeşil 0000-0003-0666-9410

Rasie Mekera 0000-0002-0092-2991

Çetin Camcı 0000-0002-0122-559X

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date November 7, 2024
Acceptance Date December 12, 2024
Published in Issue Year 2024 Issue: 49

Cite

APA Karalarlıoğlu Camcı, D., Yeşil, D., Mekera, R., Camcı, Ç. (2024). A Generalization of Source of Semiprimeness. Journal of New Theory(49), 62-68. https://doi.org/10.53570/jnt.1581076
AMA Karalarlıoğlu Camcı D, Yeşil D, Mekera R, Camcı Ç. A Generalization of Source of Semiprimeness. JNT. December 2024;(49):62-68. doi:10.53570/jnt.1581076
Chicago Karalarlıoğlu Camcı, Didem, Didem Yeşil, Rasie Mekera, and Çetin Camcı. “A Generalization of Source of Semiprimeness”. Journal of New Theory, no. 49 (December 2024): 62-68. https://doi.org/10.53570/jnt.1581076.
EndNote Karalarlıoğlu Camcı D, Yeşil D, Mekera R, Camcı Ç (December 1, 2024) A Generalization of Source of Semiprimeness. Journal of New Theory 49 62–68.
IEEE D. Karalarlıoğlu Camcı, D. Yeşil, R. Mekera, and Ç. Camcı, “A Generalization of Source of Semiprimeness”, JNT, no. 49, pp. 62–68, December 2024, doi: 10.53570/jnt.1581076.
ISNAD Karalarlıoğlu Camcı, Didem et al. “A Generalization of Source of Semiprimeness”. Journal of New Theory 49 (December 2024), 62-68. https://doi.org/10.53570/jnt.1581076.
JAMA Karalarlıoğlu Camcı D, Yeşil D, Mekera R, Camcı Ç. A Generalization of Source of Semiprimeness. JNT. 2024;:62–68.
MLA Karalarlıoğlu Camcı, Didem et al. “A Generalization of Source of Semiprimeness”. Journal of New Theory, no. 49, 2024, pp. 62-68, doi:10.53570/jnt.1581076.
Vancouver Karalarlıoğlu Camcı D, Yeşil D, Mekera R, Camcı Ç. A Generalization of Source of Semiprimeness. JNT. 2024(49):62-8.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).