Research Article
BibTex RIS Cite
Year 2025, Issue: 50, 1 - 8, 28.03.2025
https://doi.org/10.53570/jnt.1619953

Abstract

References

  • Yu. E. Anikonov, Multidimensional inverse and ill-posed problems for differential equations, VNU Science Press, 1995.
  • Yu. E. Anikonov, M. V. Neshchadim, Inverse problems for quantum kinetic equations, Journal of Inverse and Ill-Posed Problems 18 (2011) 727--740.
  • M. Rasulova, Application of solution of the quantum kinetic equations for information technology and renewable energy problem, in P. Manchanda, R. P. Lozi, A. H. Siddiqi (Eds.), Mathematical Modelling, Optimization, Analytic and Numerical Solutions, Springer, Singapore, 2020, pp. 173--179.
  • Y. Hidaka, S. Pu, Q. Wang, D. L. Yang, Foundations and applications of quantum kinetic theory, Progress in Particle and Nuclear Physics 127 (2022) 103989.
  • Y. C. Liu, K. Mameda, X. G. Huang, Covariant spin kinetic theory I: Collisionless limit, Chinese Physics C 44 (9) (2020) 094101.
  • Yu. E. Anikonov, On the single-valued solution of the inverse problem for quantum kinetic equation, Matematicheskii Sbornik 181 (1990) 68--74.
  • Yu. E. Anikonov, Inverse problems for kinetic and other evolution equations, VNU Science Press, 2014.
  • A. K. Amirov, Integral geometry and inverse problems for kinetic equations, VNU Science Press, 2001.
  • Yu. E. Anikonov, M. V. Neshchadim, An identity for approximate quantum equations and inverse problems, Journal of Applied and Industrial Mathematics 3 (2009) 149--155.
  • J. P. Puel, M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem, Inverse Problems 12 (1996) 995.
  • V. Isakov, Inverse problems for partial differential equations, Springer, 2006.
  • O. Y. Imanuvilov, M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations, Inverse Problems 17 (2001) 717--728.
  • M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems 25 (2009) 123013.
  • \"{O}. Ar\i ba\c{s}, \.{I}. G\"{o}lgeleyen, M. Y\i ld\i z, Investigation of well-posedness for a direct problem for a nonlinear fractional diffusion equation and an inverse problem, Fractal and Fractional 8 (6) (2024) 315.
  • M. M. Lavrentiev, V. G. Romanov and S. P. Shishatskii, Ill-posed problems of mathematical physics and analysis, American Mathematical Society, 1986.
  • F. G\"{o}lgeleyen, M. Yamamoto, Stability of inverse problems for ultrahyperbolic equations, Chinese Annals of Mathematics Series B 35 (2014) 527--556.
  • F. G\"{o}lgeleyen, \"{O}. Kaytmaz, A H\"{o}lder stability estimate for inverse problems for the ultrahyperbolic Schr\"{o}dinger equation, Analysis and Mathematical Physics 9 (2019) 2171--2199.
  • \.{I}. G\"{o}lgeleyen, \"{O}. Kaytmaz, Conditional stability for a Cauchy problem for the ultrahyperbolic Schr\"{o}dinger equation, Applicable Analysis 101 (2022) 1505--1516.
  • \.{I}. G\"{o}lgeleyen, \"{O}. Kaytmaz, Uniqueness for a Cauchy problem for the generalized Schr\"{o}dinger equation, AIMS Mathematics 8 (2023) 5703--5724.
  • Ö. Kaytmaz, The problem of determining source term in a kinetic equation in an unbounded domain, AIMS Mathematics 9 (4) (2024) 9184--9194.
  • \.{I}. G\"{o}lgeleyen, M. Hasdemir, A solution algorithm for an inverse source problem for the kinetic equation, International Journal of Modern Physics C 33 (11) (2022) 2250151.
  • M. V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, Journal of Inverse and Ill-Posed Problems 21 (4) (2013) 477--560.
  • M. V. Klibanov, Carleman estimates and inverse problems in the last two decades, in D. Colton, H. W. Engl, A. K. Louis, J. R. McLaughlin, W. Rundell (Eds.), Surveys on Solution Methods for Inverse Problems, Springer, Vienna, 2000, pp. 119--146.

Uniqueness of Solution of an Inverse Problem for the Quantum Kinetic Equation

Year 2025, Issue: 50, 1 - 8, 28.03.2025
https://doi.org/10.53570/jnt.1619953

Abstract

This study focuses on an inverse problem for the quantum kinetic equations, the cornerstone of quantum mechanics. These equations describe the evolution of elementary particles under strong interactions. They are fundamental to understanding the behavior of quantum systems and play a pivotal role in describing nanostructure processes and nanodiagnostics. The main target of the problem is to determine the unknown source function on the right-hand side of the equation. This paper obtains a pointwise Carleman estimate. It then uses the Carleman estimate to show the uniqueness of the problem's solution.

Ethical Statement

No approval from the Board of Ethics is required.

References

  • Yu. E. Anikonov, Multidimensional inverse and ill-posed problems for differential equations, VNU Science Press, 1995.
  • Yu. E. Anikonov, M. V. Neshchadim, Inverse problems for quantum kinetic equations, Journal of Inverse and Ill-Posed Problems 18 (2011) 727--740.
  • M. Rasulova, Application of solution of the quantum kinetic equations for information technology and renewable energy problem, in P. Manchanda, R. P. Lozi, A. H. Siddiqi (Eds.), Mathematical Modelling, Optimization, Analytic and Numerical Solutions, Springer, Singapore, 2020, pp. 173--179.
  • Y. Hidaka, S. Pu, Q. Wang, D. L. Yang, Foundations and applications of quantum kinetic theory, Progress in Particle and Nuclear Physics 127 (2022) 103989.
  • Y. C. Liu, K. Mameda, X. G. Huang, Covariant spin kinetic theory I: Collisionless limit, Chinese Physics C 44 (9) (2020) 094101.
  • Yu. E. Anikonov, On the single-valued solution of the inverse problem for quantum kinetic equation, Matematicheskii Sbornik 181 (1990) 68--74.
  • Yu. E. Anikonov, Inverse problems for kinetic and other evolution equations, VNU Science Press, 2014.
  • A. K. Amirov, Integral geometry and inverse problems for kinetic equations, VNU Science Press, 2001.
  • Yu. E. Anikonov, M. V. Neshchadim, An identity for approximate quantum equations and inverse problems, Journal of Applied and Industrial Mathematics 3 (2009) 149--155.
  • J. P. Puel, M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem, Inverse Problems 12 (1996) 995.
  • V. Isakov, Inverse problems for partial differential equations, Springer, 2006.
  • O. Y. Imanuvilov, M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations, Inverse Problems 17 (2001) 717--728.
  • M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems 25 (2009) 123013.
  • \"{O}. Ar\i ba\c{s}, \.{I}. G\"{o}lgeleyen, M. Y\i ld\i z, Investigation of well-posedness for a direct problem for a nonlinear fractional diffusion equation and an inverse problem, Fractal and Fractional 8 (6) (2024) 315.
  • M. M. Lavrentiev, V. G. Romanov and S. P. Shishatskii, Ill-posed problems of mathematical physics and analysis, American Mathematical Society, 1986.
  • F. G\"{o}lgeleyen, M. Yamamoto, Stability of inverse problems for ultrahyperbolic equations, Chinese Annals of Mathematics Series B 35 (2014) 527--556.
  • F. G\"{o}lgeleyen, \"{O}. Kaytmaz, A H\"{o}lder stability estimate for inverse problems for the ultrahyperbolic Schr\"{o}dinger equation, Analysis and Mathematical Physics 9 (2019) 2171--2199.
  • \.{I}. G\"{o}lgeleyen, \"{O}. Kaytmaz, Conditional stability for a Cauchy problem for the ultrahyperbolic Schr\"{o}dinger equation, Applicable Analysis 101 (2022) 1505--1516.
  • \.{I}. G\"{o}lgeleyen, \"{O}. Kaytmaz, Uniqueness for a Cauchy problem for the generalized Schr\"{o}dinger equation, AIMS Mathematics 8 (2023) 5703--5724.
  • Ö. Kaytmaz, The problem of determining source term in a kinetic equation in an unbounded domain, AIMS Mathematics 9 (4) (2024) 9184--9194.
  • \.{I}. G\"{o}lgeleyen, M. Hasdemir, A solution algorithm for an inverse source problem for the kinetic equation, International Journal of Modern Physics C 33 (11) (2022) 2250151.
  • M. V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, Journal of Inverse and Ill-Posed Problems 21 (4) (2013) 477--560.
  • M. V. Klibanov, Carleman estimates and inverse problems in the last two decades, in D. Colton, H. W. Engl, A. K. Louis, J. R. McLaughlin, W. Rundell (Eds.), Surveys on Solution Methods for Inverse Problems, Springer, Vienna, 2000, pp. 119--146.
There are 23 citations in total.

Details

Primary Language English
Subjects Theoretical and Applied Mechanics in Mathematics
Journal Section Research Article
Authors

Özlem Kaytmaz 0000-0003-0420-007X

Publication Date March 28, 2025
Submission Date January 15, 2025
Acceptance Date March 12, 2025
Published in Issue Year 2025 Issue: 50

Cite

APA Kaytmaz, Ö. (2025). Uniqueness of Solution of an Inverse Problem for the Quantum Kinetic Equation. Journal of New Theory(50), 1-8. https://doi.org/10.53570/jnt.1619953
AMA Kaytmaz Ö. Uniqueness of Solution of an Inverse Problem for the Quantum Kinetic Equation. JNT. March 2025;(50):1-8. doi:10.53570/jnt.1619953
Chicago Kaytmaz, Özlem. “Uniqueness of Solution of an Inverse Problem for the Quantum Kinetic Equation”. Journal of New Theory, no. 50 (March 2025): 1-8. https://doi.org/10.53570/jnt.1619953.
EndNote Kaytmaz Ö (March 1, 2025) Uniqueness of Solution of an Inverse Problem for the Quantum Kinetic Equation. Journal of New Theory 50 1–8.
IEEE Ö. Kaytmaz, “Uniqueness of Solution of an Inverse Problem for the Quantum Kinetic Equation”, JNT, no. 50, pp. 1–8, March 2025, doi: 10.53570/jnt.1619953.
ISNAD Kaytmaz, Özlem. “Uniqueness of Solution of an Inverse Problem for the Quantum Kinetic Equation”. Journal of New Theory 50 (March 2025), 1-8. https://doi.org/10.53570/jnt.1619953.
JAMA Kaytmaz Ö. Uniqueness of Solution of an Inverse Problem for the Quantum Kinetic Equation. JNT. 2025;:1–8.
MLA Kaytmaz, Özlem. “Uniqueness of Solution of an Inverse Problem for the Quantum Kinetic Equation”. Journal of New Theory, no. 50, 2025, pp. 1-8, doi:10.53570/jnt.1619953.
Vancouver Kaytmaz Ö. Uniqueness of Solution of an Inverse Problem for the Quantum Kinetic Equation. JNT. 2025(50):1-8.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).