Uniqueness of Solution of an Inverse Problem for the Quantum Kinetic Equation
Year 2025,
Issue: 50, 1 - 8, 28.03.2025
Özlem Kaytmaz
Abstract
This study focuses on an inverse problem for the quantum kinetic equations, the cornerstone of quantum mechanics. These equations describe the evolution of elementary particles under strong interactions. They are fundamental to understanding the behavior of quantum systems and play a pivotal role in describing nanostructure processes and nanodiagnostics. The main target of the problem is to determine the unknown source function on the right-hand side of the equation. This paper obtains a pointwise Carleman estimate. It then uses the Carleman estimate to show the uniqueness of the problem's solution.
Ethical Statement
No approval from the Board of Ethics is required.
References
- Yu. E. Anikonov, Multidimensional inverse and ill-posed problems for differential equations, VNU Science Press, 1995.
- Yu. E. Anikonov, M. V. Neshchadim, Inverse problems for quantum kinetic equations, Journal of Inverse and Ill-Posed Problems 18 (2011) 727--740.
- M. Rasulova, Application of solution of the quantum kinetic equations for information technology and renewable energy problem, in P. Manchanda, R. P. Lozi, A. H. Siddiqi (Eds.), Mathematical Modelling, Optimization, Analytic and Numerical Solutions, Springer, Singapore, 2020, pp. 173--179.
- Y. Hidaka, S. Pu, Q. Wang, D. L. Yang, Foundations and applications of quantum kinetic theory, Progress in Particle and Nuclear Physics 127 (2022) 103989.
- Y. C. Liu, K. Mameda, X. G. Huang, Covariant spin kinetic theory I: Collisionless limit, Chinese Physics C 44 (9) (2020) 094101.
- Yu. E. Anikonov, On the single-valued solution of the inverse problem for quantum kinetic equation, Matematicheskii Sbornik 181 (1990) 68--74.
- Yu. E. Anikonov, Inverse problems for kinetic and other evolution equations, VNU Science Press, 2014.
- A. K. Amirov, Integral geometry and inverse problems for kinetic equations, VNU Science Press, 2001.
- Yu. E. Anikonov, M. V. Neshchadim, An identity for approximate quantum equations and inverse problems, Journal of Applied and Industrial Mathematics 3 (2009) 149--155.
- J. P. Puel, M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem, Inverse Problems 12 (1996) 995.
- V. Isakov, Inverse problems for partial differential equations, Springer, 2006.
- O. Y. Imanuvilov, M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations, Inverse Problems 17 (2001) 717--728.
- M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems 25 (2009) 123013.
- \"{O}. Ar\i ba\c{s}, \.{I}. G\"{o}lgeleyen, M. Y\i ld\i z, Investigation of well-posedness for a direct problem for a nonlinear fractional diffusion equation and an inverse problem, Fractal and Fractional 8 (6) (2024) 315.
- M. M. Lavrentiev, V. G. Romanov and S. P. Shishatskii, Ill-posed problems of mathematical physics and analysis, American Mathematical Society, 1986.
- F. G\"{o}lgeleyen, M. Yamamoto, Stability of inverse problems for ultrahyperbolic equations, Chinese Annals of Mathematics Series B 35 (2014) 527--556.
- F. G\"{o}lgeleyen, \"{O}. Kaytmaz, A H\"{o}lder stability estimate for inverse problems for the ultrahyperbolic Schr\"{o}dinger equation, Analysis and Mathematical Physics 9 (2019) 2171--2199.
- \.{I}. G\"{o}lgeleyen, \"{O}. Kaytmaz, Conditional stability for a Cauchy problem for the ultrahyperbolic Schr\"{o}dinger equation, Applicable Analysis 101 (2022) 1505--1516.
- \.{I}. G\"{o}lgeleyen, \"{O}. Kaytmaz, Uniqueness for a Cauchy problem for the generalized Schr\"{o}dinger equation, AIMS Mathematics 8 (2023) 5703--5724.
- Ö. Kaytmaz, The problem of determining source term in a kinetic equation in an unbounded domain, AIMS Mathematics 9 (4) (2024) 9184--9194.
- \.{I}. G\"{o}lgeleyen, M. Hasdemir, A solution algorithm for an inverse source problem for the kinetic equation, International Journal of Modern Physics C 33 (11) (2022) 2250151.
- M. V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, Journal of Inverse and Ill-Posed Problems 21 (4) (2013) 477--560.
- M. V. Klibanov, Carleman estimates and inverse problems in the last two decades, in D. Colton, H. W. Engl, A. K. Louis, J. R. McLaughlin, W. Rundell (Eds.), Surveys on Solution Methods for Inverse Problems, Springer, Vienna, 2000, pp. 119--146.