Research Article
BibTex RIS Cite
Year 2025, Issue: 50, 9 - 29, 28.03.2025
https://doi.org/10.53570/jnt.1626094

Abstract

References

  • M. Roswitha, E. T. Baskoro, T. K. Maryati, N. A. Kurdhi, I. Susanti, Further results on cycle-supermagic labeling, AKCE International Journal of Graphs and Combinatorics 10 (2) (2013) 211--220.
  • S. T. R. Rizvi, M. Khalid, K. Ali, M. Miller, J. Ryan, On cycle-supermagicness of subdivided graphs, Bulletin of the Australian Mathematical Society 92 (1) (2015) 11--18.
  • S. T. R. Rizvi, K. Ali, M. Hussain, Cycle-supermagic labelings of the disjoint union of graphs, Utilitas Mathematica 104 (2017) 215--216.
  • M. Numana, G. Ali, M. Asif, A. Semaničová-Feňovčíková, Cycle-supermagic labelling of some classes of plane graphs, ScienceAsia 44 (2018) 129--134.
  • M. Azeem, Cycle-super magic labeling of polyomino linear and zig-zag chains, Journal of Operations Intelligence 1 (1) (2023) 67--81.
  • T. Öner, E. Erol, On $C_m$-supermagicness of book-snake graphs, Punjab University Journal of Mathematics 53 (4) (2021) 221--230.
  • T. Öner, M. Hussain, S. Banaras, $C_m$-supermagic labeling of friendship graphs, Turkic World Mathematical Society Journal of Applied and Engineering Mathematics 11 (3) (2021) 906--919.
  • T. Öner, M. Hussain, S. Banaras, $C_m$-supermagic labeling of polygonal snake graphs, Journal of Mathematics and Computational Science 20 (3) (2020) 189--195.
  • T. R. Pradipta, A. N. M. Salman, Some cycle-supermagic labelings of the calendula graphs, in: Y. W. Purnomo, L. Roza, T. A. Aziz, K. S. Perbowo, S. Ulfah (Eds.), 1st International Conference of Education on Science, Technology, Engineering, and Mathematics, Jakarta, 2017, 012071.
  • A. Gutiérrez, A. Llado, Magic covering, Journal of Combinatorial Mathematics and Combinatorial Computing 53 (2005) 43--565.

Investigation of $C_m$-Supermagic Properties in the Union of $C_n$ and $C_m$ Graph Structures

Year 2025, Issue: 50, 9 - 29, 28.03.2025
https://doi.org/10.53570/jnt.1626094

Abstract

Graph labeling, the assignment of numbers to the vertices or edges of a graph, finds applications in diverse fields such as network addressing, channel allocation, data mining, image processing, cryptography, and logistics. A $C_m$-supermagic labeling involves assigning integers to a graph's edges and vertices such that the labels' sum for all $C_m$ cycles equals a constant value. This paper explores the $C_m$-supermagic properties of the $Cl_{n,m}$ graph, formed by the union of a $C_n$ graph and $n$ $C_m$ graphs. It comprehensively analyzes the conditions under which $Cl_{n,m}$ exhibits $C_m$-supermagic properties and derive explicit labeling constructions. These results contribute to understanding $C_m$-supermagic graphs and their potential applications in theoretical and applied domains.

References

  • M. Roswitha, E. T. Baskoro, T. K. Maryati, N. A. Kurdhi, I. Susanti, Further results on cycle-supermagic labeling, AKCE International Journal of Graphs and Combinatorics 10 (2) (2013) 211--220.
  • S. T. R. Rizvi, M. Khalid, K. Ali, M. Miller, J. Ryan, On cycle-supermagicness of subdivided graphs, Bulletin of the Australian Mathematical Society 92 (1) (2015) 11--18.
  • S. T. R. Rizvi, K. Ali, M. Hussain, Cycle-supermagic labelings of the disjoint union of graphs, Utilitas Mathematica 104 (2017) 215--216.
  • M. Numana, G. Ali, M. Asif, A. Semaničová-Feňovčíková, Cycle-supermagic labelling of some classes of plane graphs, ScienceAsia 44 (2018) 129--134.
  • M. Azeem, Cycle-super magic labeling of polyomino linear and zig-zag chains, Journal of Operations Intelligence 1 (1) (2023) 67--81.
  • T. Öner, E. Erol, On $C_m$-supermagicness of book-snake graphs, Punjab University Journal of Mathematics 53 (4) (2021) 221--230.
  • T. Öner, M. Hussain, S. Banaras, $C_m$-supermagic labeling of friendship graphs, Turkic World Mathematical Society Journal of Applied and Engineering Mathematics 11 (3) (2021) 906--919.
  • T. Öner, M. Hussain, S. Banaras, $C_m$-supermagic labeling of polygonal snake graphs, Journal of Mathematics and Computational Science 20 (3) (2020) 189--195.
  • T. R. Pradipta, A. N. M. Salman, Some cycle-supermagic labelings of the calendula graphs, in: Y. W. Purnomo, L. Roza, T. A. Aziz, K. S. Perbowo, S. Ulfah (Eds.), 1st International Conference of Education on Science, Technology, Engineering, and Mathematics, Jakarta, 2017, 012071.
  • A. Gutiérrez, A. Llado, Magic covering, Journal of Combinatorial Mathematics and Combinatorial Computing 53 (2005) 43--565.
There are 10 citations in total.

Details

Primary Language English
Subjects Combinatorics and Discrete Mathematics (Excl. Physical Combinatorics)
Journal Section Research Article
Authors

Tarkan Öner 0000-0002-2882-1666

Erdi Ateş 0009-0005-7614-4275

Publication Date March 28, 2025
Submission Date January 24, 2025
Acceptance Date March 6, 2025
Published in Issue Year 2025 Issue: 50

Cite

APA Öner, T., & Ateş, E. (2025). Investigation of $C_m$-Supermagic Properties in the Union of $C_n$ and $C_m$ Graph Structures. Journal of New Theory(50), 9-29. https://doi.org/10.53570/jnt.1626094
AMA Öner T, Ateş E. Investigation of $C_m$-Supermagic Properties in the Union of $C_n$ and $C_m$ Graph Structures. JNT. March 2025;(50):9-29. doi:10.53570/jnt.1626094
Chicago Öner, Tarkan, and Erdi Ateş. “Investigation of $C_m$-Supermagic Properties in the Union of $C_n$ and $C_m$ Graph Structures”. Journal of New Theory, no. 50 (March 2025): 9-29. https://doi.org/10.53570/jnt.1626094.
EndNote Öner T, Ateş E (March 1, 2025) Investigation of $C_m$-Supermagic Properties in the Union of $C_n$ and $C_m$ Graph Structures. Journal of New Theory 50 9–29.
IEEE T. Öner and E. Ateş, “Investigation of $C_m$-Supermagic Properties in the Union of $C_n$ and $C_m$ Graph Structures”, JNT, no. 50, pp. 9–29, March 2025, doi: 10.53570/jnt.1626094.
ISNAD Öner, Tarkan - Ateş, Erdi. “Investigation of $C_m$-Supermagic Properties in the Union of $C_n$ and $C_m$ Graph Structures”. Journal of New Theory 50 (March 2025), 9-29. https://doi.org/10.53570/jnt.1626094.
JAMA Öner T, Ateş E. Investigation of $C_m$-Supermagic Properties in the Union of $C_n$ and $C_m$ Graph Structures. JNT. 2025;:9–29.
MLA Öner, Tarkan and Erdi Ateş. “Investigation of $C_m$-Supermagic Properties in the Union of $C_n$ and $C_m$ Graph Structures”. Journal of New Theory, no. 50, 2025, pp. 9-29, doi:10.53570/jnt.1626094.
Vancouver Öner T, Ateş E. Investigation of $C_m$-Supermagic Properties in the Union of $C_n$ and $C_m$ Graph Structures. JNT. 2025(50):9-29.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).