Research Article
BibTex RIS Cite
Year 2025, Issue: 50, 98 - 115, 28.03.2025
https://doi.org/10.53570/jnt.1647509

Abstract

References

  • R. Blum, A remarkable class of Mannheim curves, Canadian Mathematical Bulletin 9 (1966) 223–228.
  • S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turkish Journal of Mathematics 28 (2004) 153–163.
  • L. Kula, Y. Yaylı, On slant helix and its spherical indicatrix, Applied Mathematics and Computation 169 (1) (2005) 600–607.
  • M. Anton, Characterization of the slant helix as successor curve of the general helix, International Electronic of Geometry 7 (2) (2014) 84–91.
  • Ç. Camcı, L. Kula, M. Altınok, On spherical slant helices in euclidean 3-space (2013), https://arxiv.org/abs/1308.5532, Accessed 31 Jan 2025.
  • A. T. Ali, Position vectors of slant helices in Euclidean $3$-space, Journal of the Egyptian Mathematical Society 20 (1) (2012) 1–6.
  • T. Takahashi, N. Takeuchi, Clad helices and developable surfaces, Bulletin of Tokyo University 66 (2014) 1–9.
  • P. D. Scofield, Curves of constant precession, American Mathematical Monthly 102 (1995) 531–537.
  • B. Uzunoğlu, İ. Gök, Y. Yaylı, A new approach on curves of constant precession, Applied Mathematics and Computation 275 (2016) 317–323.
  • F. Ates, I. Gök, N. F. Ekmekci, A new kind of slant helix in Lorentzian (n+2)-spaces}, Kyungpook Mathematical Journal 56 (3) (2016) 1003–1016.
  • J. E. Lee, On slant curves in Sasakian Lorentzian 3-manifolds, International Electronic Journal of Geometry 13 (2) (2020) 108–115.
  • S. Uddin, M. S. Stankovic, M. Iqbal, S. K. Yadav, M. Aslam, Slant helices in Minkowski 3-space $E_1^3$ with Sasai’s modified frame fields, Filomat 36 (1) (2022) 151–164.
  • A. Zhou, K. Yao, D. Pei, k-type hyperbolic framed slant helices in hyperbolic 3-space, Filomat 38 (11) (2024) 3839–3850.
  • S. H. Khan, M. Jamali, C. Singh, Partially null and pseudo null slant helices of (k,m)-type in semi Euclidean space $R_2^4$, Palestine Journal of Mathematics 13 (3) (2024) 208–214.
  • O. Ateş, İ. Gök, Y. Yaylı, A new representation for slant curves in Sasakian 3-manifolds, International Electronic Journal of Geometry 17 (1) (2024) 227–289.
  • D. J. Struik, Lectures on classical differential geometry, Dover Publications, 1988.
  • S. Izumiya, N. Takeuchi, Generic properties of helices and Bertrand curves, Journal of Geometry 74 (2002) 97–109.
  • A. T. Ali, New special curves and their spherical indicatrices (2009), https://arxiv.org/abs/0909.2390}, Accessed 31 Jan 2025.
  • C. Ramis, B. Uzunoglu, Y. Yaylı, New associated curve $k$-principle direction curves and $N_{k}$-slant helix (2014), https://arxiv.org/abs/1404.7369, Accessed 31 Jan 2025.
  • W. Blaschke, Bemerkungen Über allgemeine schraubenlinien, Monatshefte für Mathematik und Physik 19 (1908) 188–204.
  • E. Kreyszig, Differential geometry, Dover Publications, 1991.
  • S. Breuer, D. Gottlieb, Explicit characterization of spherical curves, Proceedings of the American Mathematical Society 27 (1971) 126–127.
  • Y. C. Wong, On an explicit characterization of spherical curves}, Proceedings of the American Mathematical Society 34 (1) (1972) 239–242.
  • W. W. Bell, Special functions for scientists and engineers, Dover Publications, 2004.
  • D. E. Blair, Contact manifolds in Riemannian geometry, Springer, 1976.
  • Ç. Camcı, Extended cross product in a 3-dimensional almost contact metric manifold with applications to curve theory, Turkish Journal of Mathematics 35 (2011) 1–14.
  • M. Barros, A. Romero, J. L. Cabrerizo, M. Fernandez, The Gauss-Landau-Hall problem on Riemannian surfaces, Journal of Mathematical Physics 46 (2005) 112905.
  • J. L. Cabrerizo, Magnetic fields in 2D and 3D sphere, Journal of Nonlinear Mathematical Physics 20 (3) (2013) 440–450.
  • Z. Bozkurt, İ. Gök, Y. Yaylı, F. N. Ekmekci, A new approach for magnetic curves in 3D Riemannian manifolds, Journal of Mathematical Physics 55 (2014) 053501.

Constructing $k$-Slant Curves in Three Dimensional Euclidean Spaces

Year 2025, Issue: 50, 98 - 115, 28.03.2025
https://doi.org/10.53570/jnt.1647509

Abstract

Helices and constant procession curves are special examples of slant curves. However, there is no example of a $k$-slant curve for a positive integer $k\geq 2$ in three dimensional Euclidean spaces. Furthermore, the position vector of a $k$-slant curve for a positive integer $k\geq 2$ has not been known thus far. In this paper, we propose a method for constructing $k$-slant curves in three dimensional Euclidean spaces. We then show that spherical $k$-slant curves and $N_{k}$-constant procession curves can be derived from circles, for $k \in \mathbb{N}$, the set of all nonnegative integers. In addition, we provide a new proof of the spherical curve characterization and define a curve in the sphere called a spherical prime curve. Afterward, we apply $k$-slant curves to magnetic curves. Finally, we discuss the need for further research.

References

  • R. Blum, A remarkable class of Mannheim curves, Canadian Mathematical Bulletin 9 (1966) 223–228.
  • S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turkish Journal of Mathematics 28 (2004) 153–163.
  • L. Kula, Y. Yaylı, On slant helix and its spherical indicatrix, Applied Mathematics and Computation 169 (1) (2005) 600–607.
  • M. Anton, Characterization of the slant helix as successor curve of the general helix, International Electronic of Geometry 7 (2) (2014) 84–91.
  • Ç. Camcı, L. Kula, M. Altınok, On spherical slant helices in euclidean 3-space (2013), https://arxiv.org/abs/1308.5532, Accessed 31 Jan 2025.
  • A. T. Ali, Position vectors of slant helices in Euclidean $3$-space, Journal of the Egyptian Mathematical Society 20 (1) (2012) 1–6.
  • T. Takahashi, N. Takeuchi, Clad helices and developable surfaces, Bulletin of Tokyo University 66 (2014) 1–9.
  • P. D. Scofield, Curves of constant precession, American Mathematical Monthly 102 (1995) 531–537.
  • B. Uzunoğlu, İ. Gök, Y. Yaylı, A new approach on curves of constant precession, Applied Mathematics and Computation 275 (2016) 317–323.
  • F. Ates, I. Gök, N. F. Ekmekci, A new kind of slant helix in Lorentzian (n+2)-spaces}, Kyungpook Mathematical Journal 56 (3) (2016) 1003–1016.
  • J. E. Lee, On slant curves in Sasakian Lorentzian 3-manifolds, International Electronic Journal of Geometry 13 (2) (2020) 108–115.
  • S. Uddin, M. S. Stankovic, M. Iqbal, S. K. Yadav, M. Aslam, Slant helices in Minkowski 3-space $E_1^3$ with Sasai’s modified frame fields, Filomat 36 (1) (2022) 151–164.
  • A. Zhou, K. Yao, D. Pei, k-type hyperbolic framed slant helices in hyperbolic 3-space, Filomat 38 (11) (2024) 3839–3850.
  • S. H. Khan, M. Jamali, C. Singh, Partially null and pseudo null slant helices of (k,m)-type in semi Euclidean space $R_2^4$, Palestine Journal of Mathematics 13 (3) (2024) 208–214.
  • O. Ateş, İ. Gök, Y. Yaylı, A new representation for slant curves in Sasakian 3-manifolds, International Electronic Journal of Geometry 17 (1) (2024) 227–289.
  • D. J. Struik, Lectures on classical differential geometry, Dover Publications, 1988.
  • S. Izumiya, N. Takeuchi, Generic properties of helices and Bertrand curves, Journal of Geometry 74 (2002) 97–109.
  • A. T. Ali, New special curves and their spherical indicatrices (2009), https://arxiv.org/abs/0909.2390}, Accessed 31 Jan 2025.
  • C. Ramis, B. Uzunoglu, Y. Yaylı, New associated curve $k$-principle direction curves and $N_{k}$-slant helix (2014), https://arxiv.org/abs/1404.7369, Accessed 31 Jan 2025.
  • W. Blaschke, Bemerkungen Über allgemeine schraubenlinien, Monatshefte für Mathematik und Physik 19 (1908) 188–204.
  • E. Kreyszig, Differential geometry, Dover Publications, 1991.
  • S. Breuer, D. Gottlieb, Explicit characterization of spherical curves, Proceedings of the American Mathematical Society 27 (1971) 126–127.
  • Y. C. Wong, On an explicit characterization of spherical curves}, Proceedings of the American Mathematical Society 34 (1) (1972) 239–242.
  • W. W. Bell, Special functions for scientists and engineers, Dover Publications, 2004.
  • D. E. Blair, Contact manifolds in Riemannian geometry, Springer, 1976.
  • Ç. Camcı, Extended cross product in a 3-dimensional almost contact metric manifold with applications to curve theory, Turkish Journal of Mathematics 35 (2011) 1–14.
  • M. Barros, A. Romero, J. L. Cabrerizo, M. Fernandez, The Gauss-Landau-Hall problem on Riemannian surfaces, Journal of Mathematical Physics 46 (2005) 112905.
  • J. L. Cabrerizo, Magnetic fields in 2D and 3D sphere, Journal of Nonlinear Mathematical Physics 20 (3) (2013) 440–450.
  • Z. Bozkurt, İ. Gök, Y. Yaylı, F. N. Ekmekci, A new approach for magnetic curves in 3D Riemannian manifolds, Journal of Mathematical Physics 55 (2014) 053501.
There are 29 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Çetin Camcı 0000-0002-0122-559X

Publication Date March 28, 2025
Submission Date February 26, 2025
Acceptance Date March 27, 2025
Published in Issue Year 2025 Issue: 50

Cite

APA Camcı, Ç. (2025). Constructing $k$-Slant Curves in Three Dimensional Euclidean Spaces. Journal of New Theory(50), 98-115. https://doi.org/10.53570/jnt.1647509
AMA Camcı Ç. Constructing $k$-Slant Curves in Three Dimensional Euclidean Spaces. JNT. March 2025;(50):98-115. doi:10.53570/jnt.1647509
Chicago Camcı, Çetin. “Constructing $k$-Slant Curves in Three Dimensional Euclidean Spaces”. Journal of New Theory, no. 50 (March 2025): 98-115. https://doi.org/10.53570/jnt.1647509.
EndNote Camcı Ç (March 1, 2025) Constructing $k$-Slant Curves in Three Dimensional Euclidean Spaces. Journal of New Theory 50 98–115.
IEEE Ç. Camcı, “Constructing $k$-Slant Curves in Three Dimensional Euclidean Spaces”, JNT, no. 50, pp. 98–115, March 2025, doi: 10.53570/jnt.1647509.
ISNAD Camcı, Çetin. “Constructing $k$-Slant Curves in Three Dimensional Euclidean Spaces”. Journal of New Theory 50 (March 2025), 98-115. https://doi.org/10.53570/jnt.1647509.
JAMA Camcı Ç. Constructing $k$-Slant Curves in Three Dimensional Euclidean Spaces. JNT. 2025;:98–115.
MLA Camcı, Çetin. “Constructing $k$-Slant Curves in Three Dimensional Euclidean Spaces”. Journal of New Theory, no. 50, 2025, pp. 98-115, doi:10.53570/jnt.1647509.
Vancouver Camcı Ç. Constructing $k$-Slant Curves in Three Dimensional Euclidean Spaces. JNT. 2025(50):98-115.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).