Research Article
BibTex RIS Cite

Soft Set Extensions via Isotonic Spaces: Theory and Application to Risk-Based Decision Making

Year 2025, Issue: 51, 52 - 64, 30.06.2025
https://doi.org/10.53570/jnt.1686180

Abstract

This paper investigates the theoretical structure and practical implications of isotonic extensions of soft sets. It utilizes isotonic operators—functions satisfying groundedness and order-preserving properties—to derive new soft sets that reflect observed attributes and potential latent associations within a system. This study presents foundational results on preserving key soft set structures under isotonic extension and examines how internal approximation relations evolve under such operators. The study provides an application to infectious disease risk modeling in a hospital environment as a practical demonstration. Here, isotonic extensions enable the identification of asymptomatic but exposed individuals, offering a novel mathematical approach to decision-making under uncertainty.

References

  • D. A. Molodtsov, Soft set theory-First results, Computers and Mathematics with Application 37 (4-5) (1999) 19-31.
  • M. M. Day, Convergence, closure, and neighborhoods, Duke Mathematical Journal 11 (1944) 181-199.
  • F. Hausdorff, Gestufte raume, Fundamenta Mathematicae 25 (1) (1935) 486-502.
  • K. Kuratowski, Topology, Academic Press, 1966.
  • E. Čech, Z. Frolik, M. Katetov, Topological spaces, Publishing House of the Czechoslovak Academy of Sciences, 1966.
  • S. Gnilka, On extended topologies I: Closure operators, Commentationes Mathematicae 34 (1994) 81-94.
  • S. Gnilka, On extended topologies II: Compactness, quasi-metrizability, symmetry, Commentationes Mathematicae 35 (1995) 147-162.
  • S. Gnilka, On continuity in extended topologies, Commentationes Mathematicae 37 (1997) 99-108.
  • P. C. Hammer, Extended topology: Set-valued set functions, Nieuw Archief voor Wiskunde 10 (1962) 55-77.
  • P. C. Hammer, Extended topology: Continuity I, Portugaliae Mathematica 25 (2) (1964) 77-93.
  • B. M. R. Stadler, P. F. Stadler, Generalized topological spaces in evolutionary theory and combinatorial chemistry, Journal of Chemical Information and Computer Sciences 42 (3) (2002) 577-585.
  • B. M. R. Stadler, P. F. Stadler, M. Shpak, G. Wagner, Recombination spaces, metrics, and pretopologies, Zeitschrift für Physikalische Chemie 216 (2) (2002) 217-234.
  • B. M. R. Stadler, P. F. Stadler, G. Wagner, W. Fontana, The topology of the possible: Formal spaces underlying patterns of evolutionary change, Journal of Theoretical Biology 213 (2) (2001) 241-274.
  • E. D. Habil, K. A. Elzenati, Topological properties in isotonic spaces, Islamic University Journal 16 (2) (2008) 1-14.
  • E. D. Habil, K. A. Elzenati, Connectedness in isotonic spaces, Turkish Journal of Mathematics 30 (2006) 247-262.
  • P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Computers and Mathematics with Applications 45 (2003) 555-562.
  • M. I. Ali, F. Feng, X. Y. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Computers and Mathematics with Applications 57 (2009) 1547-1553.
  • D. A. Molodtsov, Equivalence and correct operations for soft sets, International Robotics & Automation Journal 4 (1) (2018) 18-21.
  • N. Çağman, Conditional complements of sets and their application to group theory, Journal of New Results in Science 10 (3) (2021) 67-74.
  • N. S. Stojanovic, A new operation on soft sets: Extended symmetric difference of soft sets, Military Technical Courier 69 (4) (2021) 779-791.
  • A. Sezgin, F. N. Aybek, A. O. Atagün, A new soft set operation: Complementary soft binary piecewise intersection operation, Black Sea Journal of Engineering and Science 6 (4) (2023) 330-346.
  • A. Sezgin, F. N. Aybek, N. B. Güngör, A new soft set operation: Complementary soft binary piecewise union operation, Acta Informatica Malaysia 7 (1) (2023) 38-53.
  • A. Sezgin, E. Yavuz, A new soft set operation: Soft binary piecewise symmetric difference operation, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 5 (2) (2023) 189-208.
  • A. Sezgin, A. M. Demirci, A new soft set operation: Complementary soft binary piecewise star operation, Ikonion Journal of Mathematics 5 (2) (2003) 24-52.
  • A. Sezgin, N. H. Çam, Soft difference-product: A new product for soft sets with its decision-making, Journal of Amasya University, the Institute of Sciences and Technology 5 (2) (2024) 144-137.
  • A. Sezgin, M. Sarıalioğlu, A new soft set operation: Complementary soft binary piecewise theta ($\theta$) operation, Journal of Kadirli Faculty of Applied Sciences 4 (2) (2024) 325-357.
  • A. Sezgin, N. Çağman, A new soft set operation: Complementary soft binary piecewise difference operation, Osmaniye Korkut Ata University Journal of the Institute of Science and Technology 7 (1) (2024) 58-94.
  • A. Sezgin, E. Şenyiğit, M. Luzum, A new product for soft sets with its decision-making: Soft gamma-product, Earthline Journal of Mathematical Sciences 15 (2) (2025) 211-234.
  • P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Computers and Mathematics with Applications 44 (8) (2002) 1077-1083.
  • N. Çağman, S. Enginoğlu, Soft matrix theory and its decision making, Computers and Mathematics with Applications 59 (2010) 3308-3314.
  • N. Çağman, S. Karataş, Intuitionistic fuzzy soft set theory and its decision making, Journal of Intelligence and Fuzzy Systems 24 (2013) 829-836.
  • W. Xu, Z. Xiao, X. Dang, D. Yang, X. Yang, Financial ratio selection for business failure prediction using soft set theory, Knowledge-Based Systems 63 (2014) 59-67.
  • M. B. Kandemir, Monotonic soft sets and its applications, Annals of Fuzzy Mathematics and Information 12 (2) (2016) 295-307.
  • A. Z. Khameneh, A. Kılıçman, A. R. Salleh, An adjustable approach to multi-criteria group decision-making based on a preference relationship under fuzzy soft information, International Journal of Fuzzy System 19 (2017) 1840-1865.
  • A. O. Atagün, H. Kamacı, O. Oktay, Reduced soft matrices and generalized products with applications in decision making, Neural Computing and Applications 29 (2018) 445-456.
  • H. Kamacı, A. O. Atagün, A. Sönmezoğlu, Row-products of soft matrices with applications in multiple-disjoint decision making, Soft Computing 62 (2018) 892-914.
  • M. B. Kandemir, The concept of σ-algebraic soft set, Soft Computing 22 (2018) 4353-4360.
  • Z. Ali, T. Mahmood, M. Aslam, R. Chinram, Another view of complex intuitionistic fuzzy soft sets based on prioritized aggregation operators and their applications to multiattribute decision making, Mathematics 9 (2021) 30803-30816.
  • M. Ali, A. Kılıçman, On interval-valued fuzzy soft preordered sets and associated applications in decision-making, Mathematics 9 (2021) 3142.
  • G. Ali, H. Alolaiyan, D. Pamučar, M. Asif, N. Lateef, A novel MADM framework under q-rung orthopair fuzzy bipolar soft sets, Mathematics 9 (2021) 2163.
  • S. Ali, M. Kousar, Q. Xin, D. Pamučar, M. S. Hameed, R. Fayyaz, Belief and possibility belief interval-valued N-soft set and their applications in multi-attribute decision-making problems, Entropy 23 (2021) 1498.
  • O. Dalkılıç, A novel approach to soft set theory in decision-making under uncertainty, International Journal of Computer Mathematics 98 (10) (2021) 1935-1945.
  • K. Taşköprü, E. Karaköse, A soft set approach to relations and its application to decision making, Mathematical Sciences and Applications E-Notes 11 (1) (2023) 1-13.

Year 2025, Issue: 51, 52 - 64, 30.06.2025
https://doi.org/10.53570/jnt.1686180

Abstract

References

  • D. A. Molodtsov, Soft set theory-First results, Computers and Mathematics with Application 37 (4-5) (1999) 19-31.
  • M. M. Day, Convergence, closure, and neighborhoods, Duke Mathematical Journal 11 (1944) 181-199.
  • F. Hausdorff, Gestufte raume, Fundamenta Mathematicae 25 (1) (1935) 486-502.
  • K. Kuratowski, Topology, Academic Press, 1966.
  • E. Čech, Z. Frolik, M. Katetov, Topological spaces, Publishing House of the Czechoslovak Academy of Sciences, 1966.
  • S. Gnilka, On extended topologies I: Closure operators, Commentationes Mathematicae 34 (1994) 81-94.
  • S. Gnilka, On extended topologies II: Compactness, quasi-metrizability, symmetry, Commentationes Mathematicae 35 (1995) 147-162.
  • S. Gnilka, On continuity in extended topologies, Commentationes Mathematicae 37 (1997) 99-108.
  • P. C. Hammer, Extended topology: Set-valued set functions, Nieuw Archief voor Wiskunde 10 (1962) 55-77.
  • P. C. Hammer, Extended topology: Continuity I, Portugaliae Mathematica 25 (2) (1964) 77-93.
  • B. M. R. Stadler, P. F. Stadler, Generalized topological spaces in evolutionary theory and combinatorial chemistry, Journal of Chemical Information and Computer Sciences 42 (3) (2002) 577-585.
  • B. M. R. Stadler, P. F. Stadler, M. Shpak, G. Wagner, Recombination spaces, metrics, and pretopologies, Zeitschrift für Physikalische Chemie 216 (2) (2002) 217-234.
  • B. M. R. Stadler, P. F. Stadler, G. Wagner, W. Fontana, The topology of the possible: Formal spaces underlying patterns of evolutionary change, Journal of Theoretical Biology 213 (2) (2001) 241-274.
  • E. D. Habil, K. A. Elzenati, Topological properties in isotonic spaces, Islamic University Journal 16 (2) (2008) 1-14.
  • E. D. Habil, K. A. Elzenati, Connectedness in isotonic spaces, Turkish Journal of Mathematics 30 (2006) 247-262.
  • P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Computers and Mathematics with Applications 45 (2003) 555-562.
  • M. I. Ali, F. Feng, X. Y. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Computers and Mathematics with Applications 57 (2009) 1547-1553.
  • D. A. Molodtsov, Equivalence and correct operations for soft sets, International Robotics & Automation Journal 4 (1) (2018) 18-21.
  • N. Çağman, Conditional complements of sets and their application to group theory, Journal of New Results in Science 10 (3) (2021) 67-74.
  • N. S. Stojanovic, A new operation on soft sets: Extended symmetric difference of soft sets, Military Technical Courier 69 (4) (2021) 779-791.
  • A. Sezgin, F. N. Aybek, A. O. Atagün, A new soft set operation: Complementary soft binary piecewise intersection operation, Black Sea Journal of Engineering and Science 6 (4) (2023) 330-346.
  • A. Sezgin, F. N. Aybek, N. B. Güngör, A new soft set operation: Complementary soft binary piecewise union operation, Acta Informatica Malaysia 7 (1) (2023) 38-53.
  • A. Sezgin, E. Yavuz, A new soft set operation: Soft binary piecewise symmetric difference operation, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 5 (2) (2023) 189-208.
  • A. Sezgin, A. M. Demirci, A new soft set operation: Complementary soft binary piecewise star operation, Ikonion Journal of Mathematics 5 (2) (2003) 24-52.
  • A. Sezgin, N. H. Çam, Soft difference-product: A new product for soft sets with its decision-making, Journal of Amasya University, the Institute of Sciences and Technology 5 (2) (2024) 144-137.
  • A. Sezgin, M. Sarıalioğlu, A new soft set operation: Complementary soft binary piecewise theta ($\theta$) operation, Journal of Kadirli Faculty of Applied Sciences 4 (2) (2024) 325-357.
  • A. Sezgin, N. Çağman, A new soft set operation: Complementary soft binary piecewise difference operation, Osmaniye Korkut Ata University Journal of the Institute of Science and Technology 7 (1) (2024) 58-94.
  • A. Sezgin, E. Şenyiğit, M. Luzum, A new product for soft sets with its decision-making: Soft gamma-product, Earthline Journal of Mathematical Sciences 15 (2) (2025) 211-234.
  • P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Computers and Mathematics with Applications 44 (8) (2002) 1077-1083.
  • N. Çağman, S. Enginoğlu, Soft matrix theory and its decision making, Computers and Mathematics with Applications 59 (2010) 3308-3314.
  • N. Çağman, S. Karataş, Intuitionistic fuzzy soft set theory and its decision making, Journal of Intelligence and Fuzzy Systems 24 (2013) 829-836.
  • W. Xu, Z. Xiao, X. Dang, D. Yang, X. Yang, Financial ratio selection for business failure prediction using soft set theory, Knowledge-Based Systems 63 (2014) 59-67.
  • M. B. Kandemir, Monotonic soft sets and its applications, Annals of Fuzzy Mathematics and Information 12 (2) (2016) 295-307.
  • A. Z. Khameneh, A. Kılıçman, A. R. Salleh, An adjustable approach to multi-criteria group decision-making based on a preference relationship under fuzzy soft information, International Journal of Fuzzy System 19 (2017) 1840-1865.
  • A. O. Atagün, H. Kamacı, O. Oktay, Reduced soft matrices and generalized products with applications in decision making, Neural Computing and Applications 29 (2018) 445-456.
  • H. Kamacı, A. O. Atagün, A. Sönmezoğlu, Row-products of soft matrices with applications in multiple-disjoint decision making, Soft Computing 62 (2018) 892-914.
  • M. B. Kandemir, The concept of σ-algebraic soft set, Soft Computing 22 (2018) 4353-4360.
  • Z. Ali, T. Mahmood, M. Aslam, R. Chinram, Another view of complex intuitionistic fuzzy soft sets based on prioritized aggregation operators and their applications to multiattribute decision making, Mathematics 9 (2021) 30803-30816.
  • M. Ali, A. Kılıçman, On interval-valued fuzzy soft preordered sets and associated applications in decision-making, Mathematics 9 (2021) 3142.
  • G. Ali, H. Alolaiyan, D. Pamučar, M. Asif, N. Lateef, A novel MADM framework under q-rung orthopair fuzzy bipolar soft sets, Mathematics 9 (2021) 2163.
  • S. Ali, M. Kousar, Q. Xin, D. Pamučar, M. S. Hameed, R. Fayyaz, Belief and possibility belief interval-valued N-soft set and their applications in multi-attribute decision-making problems, Entropy 23 (2021) 1498.
  • O. Dalkılıç, A novel approach to soft set theory in decision-making under uncertainty, International Journal of Computer Mathematics 98 (10) (2021) 1935-1945.
  • K. Taşköprü, E. Karaköse, A soft set approach to relations and its application to decision making, Mathematical Sciences and Applications E-Notes 11 (1) (2023) 1-13.
There are 43 citations in total.

Details

Primary Language English
Subjects Calculus of Variations, Mathematical Aspects of Systems Theory and Control Theory
Journal Section Research Article
Authors

Mustafa Burç Kandemir 0000-0002-0159-5670

Early Pub Date June 30, 2025
Publication Date June 30, 2025
Submission Date April 28, 2025
Acceptance Date June 14, 2025
Published in Issue Year 2025 Issue: 51

Cite

APA Kandemir, M. B. (2025). Soft Set Extensions via Isotonic Spaces: Theory and Application to Risk-Based Decision Making. Journal of New Theory(51), 52-64. https://doi.org/10.53570/jnt.1686180
AMA Kandemir MB. Soft Set Extensions via Isotonic Spaces: Theory and Application to Risk-Based Decision Making. JNT. June 2025;(51):52-64. doi:10.53570/jnt.1686180
Chicago Kandemir, Mustafa Burç. “Soft Set Extensions via Isotonic Spaces: Theory and Application to Risk-Based Decision Making”. Journal of New Theory, no. 51 (June 2025): 52-64. https://doi.org/10.53570/jnt.1686180.
EndNote Kandemir MB (June 1, 2025) Soft Set Extensions via Isotonic Spaces: Theory and Application to Risk-Based Decision Making. Journal of New Theory 51 52–64.
IEEE M. B. Kandemir, “Soft Set Extensions via Isotonic Spaces: Theory and Application to Risk-Based Decision Making”, JNT, no. 51, pp. 52–64, June2025, doi: 10.53570/jnt.1686180.
ISNAD Kandemir, Mustafa Burç. “Soft Set Extensions via Isotonic Spaces: Theory and Application to Risk-Based Decision Making”. Journal of New Theory 51 (June2025), 52-64. https://doi.org/10.53570/jnt.1686180.
JAMA Kandemir MB. Soft Set Extensions via Isotonic Spaces: Theory and Application to Risk-Based Decision Making. JNT. 2025;:52–64.
MLA Kandemir, Mustafa Burç. “Soft Set Extensions via Isotonic Spaces: Theory and Application to Risk-Based Decision Making”. Journal of New Theory, no. 51, 2025, pp. 52-64, doi:10.53570/jnt.1686180.
Vancouver Kandemir MB. Soft Set Extensions via Isotonic Spaces: Theory and Application to Risk-Based Decision Making. JNT. 2025(51):52-64.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).