A New Generalization of Sz´asz Operators
Year 2025,
Issue: 52, 61 - 71, 30.09.2025
Harun Çiçek
,
Naıruz Ousman
,
Aydın İzgi
Abstract
The purpose of this study is to define a new generalization of Sz\'{a}sz operators. The paper proceeds to study the rate of convergence and approximation properties of the newly defined Sz\'{a}sz operator on closed subintervals of the real axis. Subsequently, it investigates the Voronovskaja-type approximation and the local approximation of the new Sz\'{a}sz operator using functions satisfying the Lipschitz condition. Additionally, this paper analyzes the rate of convergence for $\digamma$ and $\digamma^\prime$ using the continuity modulus. Finally, it graphically illustrates the approximation of the new generalization of the Sz\'{a}sz operator to a continuous function with a numerical example and provides a numerical table of error values in the approximation of a continuous function for different values of $n$ and $q$.
References
-
K. Weierstrass, Über die analytische darstellbarkeit sogenannter willkürlicher functionen einer reellen veränderlichen, Sitzungsberichte Der Akademie zu Berlin 2 (1885) 633--639.
-
S. N. Bernstein, Demonstration du theoreme de Weierstrass fondee sur le calcul des probabilites, Communications de la Société Mathématique de Kharkow 13 (1) (1912) 1--2.
-
P. P. Korovkin, On convergence of linear positive operators in the space of continuous functions, Doklady Akademii Nauk 90 (1953) 961--964.
-
T. Acar, A. Kajla, Degree of approximation for bivariate generalized Bernstein type operators, Results in Mathematics 73 (2018) 79.
-
H. Çiçek, S. J. Zainalabdin, A. İzgi, A new generalization of Sz\'{a}sz-Kantorovich operators on weighted space, Turkish Journal of Science 7 (2) (2022) 85--106.
-
A. İzgi, Order of approximation of functions of two variables by new type gamma operators, General Mathematics 17 (1) (2009) 23--32.
-
M. Ayman-Mursaleen, M. Nasiruzzaman, N. Rao, M. Dilshad, K. S. Nisar, Approximation by the modified $\lambda$-Bernstein-polynomial in terms of basis function, AIMS Mathematics 9 (2) (2024) 4409--4426.
-
N. Rao, M. Farid, M. Raiz, Approximation results: Sz\'{a}sz–Kantorovich operators enhanced by Frobenius–Euler–Type polynomials, Axioms 14 (4) (2025) 252.
-
F. Özger, R. Aslan, M. Ersoy, Some approximation results on a class of Sz\'{a}sz-Mirakjan-Kantorovich operators including non-negative parameter $\alpha$, Numerical Functional Analysis and Optimization 46 (6) (2025) 461--484.
-
N. I. Mahmudov, M. Kara, Generalization of Sz\'{a}sz–Mirakjan operators and their approximation properties, The Journal of Analysis 33 (2025) 1687--1710.
-
A. Kumar, Approximation by modified Szász operators with a new modification of Brenke type polynomials, Kragujevac Journal of Mathematics 49 (1) (2025) 111-124.
-
M. Ayman-Mursaleen, M. Nasiruzzaman, N. Rao, On the Approximation of Szász-Jakimovski-Leviatan beta type integral operators enhanced by Appell polynomials, Iranian Journal of Science 49 (2025) 1013--1022.
-
İ. Gürhan, Z. Tat, A generalization of Szász operators with the help of new kind Appell polynomials, Mathematical Foundations of Computing 8 (1) (2025) 64--73.
-
O. Sz\'{a}sz, Generalization of S. Bernstein's polynomials to the infinite interval, Journal of Research of the National Bureau of Standards 45 (3) (1950) 239--245.
-
G. M. Mirakjan, Approximation of continuos functions with the aid of poynomials, Doklady Akademii Nauk 31 (1941) 201--205.
-
L. V. Kantorovich, Sur certains developpements suivant les polynomes de la forme de S. Bernstein I, Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS 20 (1930) 563--568.
-
L. V. Kantorovich, Sur certains developpements suivant les polynomes de la forme de S. Bernstein II, Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS 20 (1930) 595--600.
-
A. İzgi, Approximation by a class of new type Bernstein polynomials of one and two variables, Global Journal of Pure and Applied Mathematics 8 (5) (2012) 55--71.
-
H. Çiçek, A. İzgi, The q-Chlodowsky and q-Sz\'{a}sz-Durrmeyer hybrid operators on weighted spaces, Hindawi Journal of Mathematics 2020 (2020) 8682598.
-
A. İzgi, Approximation by composition of Sz\'{a}sz-Mirakyan and Durrmeyer-Chlodowsky operators, Eurasian Mathematical Journal 3 (1) (2012) 63--71.
-
P. P. Korovkin, Linear operators and approximation theory, Hindustan Publishing Corporation, 1960.
-
F. Altomare, M. Campiti, Korovkin-type approximation theory and its applications, De Gruyter Studies in Mathematics, 1994.
-
E. Voronovskaja, Determination de la forme asymplotique d'approximation des fonctions par les polynomes de M. Bernstein, Doklady Akademii Nauk 4 (1932) 79--85.