Research Article
BibTex RIS Cite

Perturbed Statistical Cluster Points

Year 2025, Issue: 52, 72 - 82, 30.09.2025
https://doi.org/10.53570/jnt.1758551

Abstract

In recent years, generalizations of statistical convergence have appeared in the literature. The notion of perturbed statistical convergence has recently been established as one such generalization. This recent convergence approach aims to enhance the convergence behavior of a sequence by utilizing specific perturbation functions, thereby increasing its flexibility. This paper defines cluster points related to perturbed statistical convergence and investigates some of their fundamental properties.

References

  • R. Abazari, Statistical convergence in g-metric spaces, Filomat 36 (5) (2022) 1461--1468.
  • M. İlkhan, E. E. Kara, On statistical convergence in quasi-metric spaces, Demonstratio Mathematica 52 (1) (2019) 225--236.
  • F. Nuray, Statistical convergence in partial metric spaces, Korean Journal of Mathematics 30 (1) (2022) 155--160.
  • C. Yalçın, Statistical convergence on b-metric spaces, Turkish Journal of Mathematics and Computer Science 17 (1) (2025) 275--281.
  • C. Yalçın, Perturbed statistical convergence, Results in Nonlinear Analysis 8 (2) 305--313.
  • I. S. Ibrahim, I. Brevik, R. P. Agarwal, M. A. Yousif, N. Chorfi, P. O. Mohammed, Weighted statistical convergence and cluster points: The Fibonacci sequence-based approach using modulus functions, Mathematics 12 (23) (2024) 3764.
  • Ö. Kişi, V. Gürdal, M. B. Huban, Ideal statistically limit points and ideal statistically cluster points of triple sequences of fuzzy numbers, Journal of Classical Analysis 19 (2) (2022) 127--137.
  • P. Malik, S. Das, $\mathcal{A^I}$-statistical limit points and $\mathcal{A^I}$-statistical cluster points, Filomat 36 (5) (2022) 1573--1585.
  • H. Fast, Sur la convergence statistique, Colloquium Mathematicae 2 (3-4) (1951) 241--244.
  • J. A. Fridy, Statistical limit points, Proceedings of the American Mathematical Society 118 (4) (1993) 1187--1192.
  • M. Jleli, B. Samet, On Banach's fixed point theorem in perturbed metric spaces, Journal of Applied Analysis \& Computation 15 (2) (2025) 993--1001.
  • S. Aytar, Rough statistical convergence, Numerical Functional Analysis and Optimization 29 (3-4) (2008) 291--303.
  • S. Aytar, Rough statistical cluster points, Filomat 31 (16) (2017) 5295--5304.
There are 13 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Research Article
Authors

Ceylan Yalçın 0000-0003-0989-6280

Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date August 5, 2025
Acceptance Date September 19, 2025
Published in Issue Year 2025 Issue: 52

Cite

APA Yalçın, C. (2025). Perturbed Statistical Cluster Points. Journal of New Theory(52), 72-82. https://doi.org/10.53570/jnt.1758551
AMA Yalçın C. Perturbed Statistical Cluster Points. JNT. September 2025;(52):72-82. doi:10.53570/jnt.1758551
Chicago Yalçın, Ceylan. “Perturbed Statistical Cluster Points”. Journal of New Theory, no. 52 (September 2025): 72-82. https://doi.org/10.53570/jnt.1758551.
EndNote Yalçın C (September 1, 2025) Perturbed Statistical Cluster Points. Journal of New Theory 52 72–82.
IEEE C. Yalçın, “Perturbed Statistical Cluster Points”, JNT, no. 52, pp. 72–82, September2025, doi: 10.53570/jnt.1758551.
ISNAD Yalçın, Ceylan. “Perturbed Statistical Cluster Points”. Journal of New Theory 52 (September2025), 72-82. https://doi.org/10.53570/jnt.1758551.
JAMA Yalçın C. Perturbed Statistical Cluster Points. JNT. 2025;:72–82.
MLA Yalçın, Ceylan. “Perturbed Statistical Cluster Points”. Journal of New Theory, no. 52, 2025, pp. 72-82, doi:10.53570/jnt.1758551.
Vancouver Yalçın C. Perturbed Statistical Cluster Points. JNT. 2025(52):72-8.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).