Research Article
BibTex RIS Cite

Conformable Differential Geometry of Some Special Curves in the Equi-Affine Space

Year 2025, Issue: 52, 83 - 91, 30.09.2025
https://doi.org/10.53570/jnt.1774470

Abstract

This study investigates the conformable differential geometry of some special curves defined in the equi-affine space. The conformable derivative, a generalization of fractional calculus, is a flexible operator controlled by a parameter $\alpha$ that enables the modeling of nonlocal behavior in functions. This paper aims to offer a new perspective by combining the modern concept of derivative with equi-affine differential geometry. First, this paper introduces the conformable equi-affine arc length parameter and the corresponding conformable Frenet frame in the equi-affine space. The main focus is on characterizing special classes of curves, such as helices, slant helices, and rectifying curves, within the conformable equi-affine frame. These results expand the geometric applications of conformable calculus and provide a broader theoretical framework for curve analysis in equi-affine geometry. Finally, the accuracy of the results is observed with an example, and the curvatures are plotted as a function of $\alpha$ with MATLAB R2022b.

References

  • M. E. Aydın, A. Mihai, A. Yokuş, Applications of fractional calculus in equiaffine geometry: Plane curves with fractional order, Mathematical Methods in the Applied Sciences 44 (2021) 13659–13669.
  • M. Takahashi, Equi-affine plane curves with singular points, Journal of Geometry 113(1) (2022) 16.
  • M. Ögrenmiş, A. O. Ögrenmis, Lancret-type theorems in equiaffine space, Journal of Geometry 115(2) (2024) 25.
  • M. Öğrenmiş, Fractional curvatures of equiaffine curves in three-dimensional affine space, Journal of New Theory (46) (2024) 11–22.
  • M. Ögrenmiş, A. O. Ögrenmiş, Curves in multiplicative equiaffine space, Mathematics 13 (2025) 1107.
  • R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, Journal of Computational and Applied Mathematics 264 (2014) 65–70.
  • U. Gözütok, H. A. Çoban, Y. Sağıroğlu, Frenet frame with respect to conformable derivative, Filomat 33(6) (2019) 1541–1550.
  • B. Yılmaz, A new type electromagnetic curves in optical fiber and rotation of the polarization plane using fractional calculus, Optik 247 (2021) 168026.
  • A. Has, B. Yılmaz, A. Akkurt, H. Yıldırım, Conformable special curves in Euclidean $\mathbb{R}^3$-space, Filomat 36(14) (2022) 4687–4698.
  • A. Has, B. Yılmaz, Measurement and calculation on conformable surfaces, Mediterranean Journal of Mathematics 20(5) (2023) 274.
  • E. Karaca, A. Altınkaya, Minkowski geometry of special conformable curves, International Journal of Geometric Methods in Modern Physics 22(05) (2025) 2450318.
  • D. Davis, Generic affine differential geometry of curves in $\mathbb{R}^n$, Proceedings of the Royal Society of Edinburgh 136A (2006) 1195–1205.
There are 12 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Anıl Altınkaya 0000-0003-2382-6596

Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date August 30, 2025
Acceptance Date September 30, 2025
Published in Issue Year 2025 Issue: 52

Cite

APA Altınkaya, A. (2025). Conformable Differential Geometry of Some Special Curves in the Equi-Affine Space. Journal of New Theory(52), 83-91. https://doi.org/10.53570/jnt.1774470
AMA Altınkaya A. Conformable Differential Geometry of Some Special Curves in the Equi-Affine Space. JNT. September 2025;(52):83-91. doi:10.53570/jnt.1774470
Chicago Altınkaya, Anıl. “Conformable Differential Geometry of Some Special Curves in the Equi-Affine Space”. Journal of New Theory, no. 52 (September 2025): 83-91. https://doi.org/10.53570/jnt.1774470.
EndNote Altınkaya A (September 1, 2025) Conformable Differential Geometry of Some Special Curves in the Equi-Affine Space. Journal of New Theory 52 83–91.
IEEE A. Altınkaya, “Conformable Differential Geometry of Some Special Curves in the Equi-Affine Space”, JNT, no. 52, pp. 83–91, September2025, doi: 10.53570/jnt.1774470.
ISNAD Altınkaya, Anıl. “Conformable Differential Geometry of Some Special Curves in the Equi-Affine Space”. Journal of New Theory 52 (September2025), 83-91. https://doi.org/10.53570/jnt.1774470.
JAMA Altınkaya A. Conformable Differential Geometry of Some Special Curves in the Equi-Affine Space. JNT. 2025;:83–91.
MLA Altınkaya, Anıl. “Conformable Differential Geometry of Some Special Curves in the Equi-Affine Space”. Journal of New Theory, no. 52, 2025, pp. 83-91, doi:10.53570/jnt.1774470.
Vancouver Altınkaya A. Conformable Differential Geometry of Some Special Curves in the Equi-Affine Space. JNT. 2025(52):83-91.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).