Research Article
BibTex RIS Cite

YAPAY ZEKA DESTEKLİ ŞEHİR ALTYAPI YÖNETİMİ: GOOGLE STREET VIEW GÖRÜNTÜLERİNDE YOLO İLE RÖGAR KAPAKLARININ VE IZGARALARIN OTOMATİK TESPİTİ

Year 2024, , 112 - 124, 31.12.2024
https://doi.org/10.46238/jobda.1575356

Abstract

Hızlı kentleşmeyle birlikte, kentsel altyapının bakımı devasa bir gereksinim haline gelmiştir. Rögar kapakları ve drenaj gibi altyapı varlıklarının doğru ve zamanında tespit edilmesi, su drenaj ve kanalizasyon sistemlerinin bir şehrin sınırları içinde düzgün çalışmasını sağlamak için son derece önemlidir. Klasik denetim yöntemleri yavaş, pahalı ve hatalarla dolu olmasına katkıda bulunmuştur. Bu makale, Google Street View'dan elde edilen görüntülerde rögar kapaklarının ve drenajın otomatik olarak tespit edilmesinde YOLO kullanımını uygulamaya çalışmaktadır. Bu çalışma, şehir altyapılarını izlemek ve bakım planlamasını optimize etmek için nesne tespitinden elde edilen sonuçların MIS ile nasıl entegre edileceğine odaklanacaktır. Bu sonuçlar, YOLOv11'in çok yüksek bir doğruluk oranına sahip olduğunu ve Google Street View'daki görüntülerden rögar kapaklarını ve drenajı tespit ettiğini kanıtlamıştır. Performans ölçütleri arasında modelin hassasiyetini ve doğruluğunu tanımlayan mAP@0.5 ve mAP@0.5-0.95 yer alırken, FPS analizi gerçek zamanlı uygulanabilirliği tanımlamıştır. Bu tür bulgular, yapay zeka tabanlı çözüm kullanımının kentsel altyapının otomatik olarak izlenmesi ve yönetilmesinde etkili olduğunun altını çizmiş ve karar destek sistemlerine büyük katkı sağlama potansiyellerini kanıtlamıştır.

References

  • Wang, J., Fang, Z., Li, Q., Tang, Z., Huang, Z., Hong, Z., & He, H. (2024). YOLO-SDD: An Improved YOLOv5 for Storm Drain Detection in Street-Level View. Journal of Shanghai Jiaotong University (Science), 1-16.
  • Oulahyane, A., & Kodad, M. (2024). Advancing Urban Infrastructure Safety: Modern Research in Deep Learning for Manhole Situation Supervision Through Drone Imaging and Geographic Information System Integration. International Journal of Advanced Computer Science & Applications, 15(7).
  • Omar, M., & Kumar, P. (2024). PD-ITS: Pothole Detection Using YOLO Variants for Intelligent Transport System. SN Computer Science, 5(5), 552.
  • Ping, P., Yang, X., & Gao, Z. (2020, August). A deep learning approach for street pothole detection. In 2020 IEEE Sixth International Conference on Big Data Computing Service and Applications (BigDataService) (pp. 198-204). IEEE.
  • Fahmani, M., Golroo, A., & Sedighian-Fard, M. (2024). Deep learning-based predictive models for pavement patching and manholes evaluation. International Journal of Pavement Engineering, 25(1), 2349901.
  • Wang, D., & Huang, Y. (2024). Manhole Cover Classification Based on Super-Resolution Reconstruction of Unmanned Aerial Vehicle Aerial Imagery. Applied Sciences, 14(7), 2769.
  • Yin, X., Chen, Y., Bouferguene, A., Zaman, H., Al-Hussein, M., & Kurach, L. (2020). A deep learning-based framework for an automated defect detection system for sewer pipes. Automation in construction, 109, 102967.
  • Liao, L., Li, H., Shang, W., & Ma, L. (2022). An empirical study of the impact of hyperparameter tuning and model optimization on the performance properties of deep neural networks. ACM Transactions on Software Engineering and Methodology (TOSEM), 31(3), 1-40.
  • Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295-316.
  • Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., ... & Lindauer, M. (2023). Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), e1484.
  • Du, X., Xu, H., & Zhu, F. (2021). Understanding the effect of hyperparameter optimization on machine learning models for structure design problems. Computer-Aided Design, 135, 103013.
  • Van Rijn, J. N., & Hutter, F. (2018, July). Hyperparameter importance across datasets. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 2367-2376).
  • Cepa, J. J., Alberti, M. G., Pavón, R. M., & Calvo, J. A. (2024). Integrating BIM and GIS for an Existing Infrastructure. Applied Sciences, 14(23), 10962.

ARTIFICIAL INTELLIGENCE SUPPORTED CITY INFRASTRUCTURE MANAGEMENT: AUTOMATIC DETECTION OF MANHOLE COVERS AND DRAINAGE WITH YOLO ON GOOGLE STREET VIEW IMAGES

Year 2024, , 112 - 124, 31.12.2024
https://doi.org/10.46238/jobda.1575356

Abstract

With rapid urbanization, maintaining urban infrastructure has grown into a gigantic requirement. Proper and timely identification of infrastructure assets, such as manhole covers and drainage, is of utmost importance to ensure that water drainage and sewerage systems work properly within the precincts of a city. The classical methods of inspection have contributed to being slow, expensive, and full of errors. The paper tries to implement the use of YOLO in the automatic detection of manhole covers and drainage in images derived from Google Street View. This study will be focused on how to integrate results from object detection with MIS in order to monitor city infrastructures and optimize the planning of maintenance. These results proved that YOLOv11 has a very high accuracy rate and has identified manhole covers and drainage from imagery on Google Street View. Performance metrics included mAP@0.5 and mAP@0.5-0.95, which described sensitivity and accuracy of the model, while the FPS analysis described the applicability in real time. Those kinds of findings have underlined that AI-based solution usage is efficient in the automatic monitoring and management of urban infrastructure and prove their potential to contribute much to decision support systems.

References

  • Wang, J., Fang, Z., Li, Q., Tang, Z., Huang, Z., Hong, Z., & He, H. (2024). YOLO-SDD: An Improved YOLOv5 for Storm Drain Detection in Street-Level View. Journal of Shanghai Jiaotong University (Science), 1-16.
  • Oulahyane, A., & Kodad, M. (2024). Advancing Urban Infrastructure Safety: Modern Research in Deep Learning for Manhole Situation Supervision Through Drone Imaging and Geographic Information System Integration. International Journal of Advanced Computer Science & Applications, 15(7).
  • Omar, M., & Kumar, P. (2024). PD-ITS: Pothole Detection Using YOLO Variants for Intelligent Transport System. SN Computer Science, 5(5), 552.
  • Ping, P., Yang, X., & Gao, Z. (2020, August). A deep learning approach for street pothole detection. In 2020 IEEE Sixth International Conference on Big Data Computing Service and Applications (BigDataService) (pp. 198-204). IEEE.
  • Fahmani, M., Golroo, A., & Sedighian-Fard, M. (2024). Deep learning-based predictive models for pavement patching and manholes evaluation. International Journal of Pavement Engineering, 25(1), 2349901.
  • Wang, D., & Huang, Y. (2024). Manhole Cover Classification Based on Super-Resolution Reconstruction of Unmanned Aerial Vehicle Aerial Imagery. Applied Sciences, 14(7), 2769.
  • Yin, X., Chen, Y., Bouferguene, A., Zaman, H., Al-Hussein, M., & Kurach, L. (2020). A deep learning-based framework for an automated defect detection system for sewer pipes. Automation in construction, 109, 102967.
  • Liao, L., Li, H., Shang, W., & Ma, L. (2022). An empirical study of the impact of hyperparameter tuning and model optimization on the performance properties of deep neural networks. ACM Transactions on Software Engineering and Methodology (TOSEM), 31(3), 1-40.
  • Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295-316.
  • Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., ... & Lindauer, M. (2023). Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), e1484.
  • Du, X., Xu, H., & Zhu, F. (2021). Understanding the effect of hyperparameter optimization on machine learning models for structure design problems. Computer-Aided Design, 135, 103013.
  • Van Rijn, J. N., & Hutter, F. (2018, July). Hyperparameter importance across datasets. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 2367-2376).
  • Cepa, J. J., Alberti, M. G., Pavón, R. M., & Calvo, J. A. (2024). Integrating BIM and GIS for an Existing Infrastructure. Applied Sciences, 14(23), 10962.
There are 13 citations in total.

Details

Primary Language English
Subjects Information Systems Development Methodologies and Practice, Information Systems Organisation and Management
Journal Section Original Scientific Articles
Authors

Can Aydın 0000-0002-0133-9634

Gizem Erdoğan 0000-0002-1376-6457

Publication Date December 31, 2024
Submission Date October 29, 2024
Acceptance Date December 10, 2024
Published in Issue Year 2024

Cite

APA Aydın, C., & Erdoğan, G. (2024). ARTIFICIAL INTELLIGENCE SUPPORTED CITY INFRASTRUCTURE MANAGEMENT: AUTOMATIC DETECTION OF MANHOLE COVERS AND DRAINAGE WITH YOLO ON GOOGLE STREET VIEW IMAGES. Journal of Business in The Digital Age, 7(2), 112-124. https://doi.org/10.46238/jobda.1575356

                                                                Creative Commons Lisansı

Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.