Review
BibTex RIS Cite

Kardiyopulmoner Bypass Sırasında Nitrik Oksit Kullanımının Kardiyak ve Renal Hasar Üzerine Etkileri

Year 2020, Volume: 3 Issue: Özel Sayı 1, 11 - 20, 22.06.2020
https://doi.org/10.36516/jocass.2020.35

Abstract

Kardiyopulmoner bypass (KPB) uygulaması gerektiren kardiyak cerrahi sistemik inflamatuar yanıt, iskemi/reperfüzyon hasarı ve hemolize neden olmakta ve vücutta kalp, böbrek gibi çeşitli organlarda disfonksiyona yol açmaktadır. KPB sırasında eksojen nitrik oksit (NO) uygulamasının bu komplikasyonları engelleyebileceği gösterilmiştir. Pulmoner hipertansiyonu tedavi etmek için kullanılan bir gaz olan NO, vasküler NO tükenmesini önleyerek organ perfüzyonunu korur. NO’in iskemi-reperfüzyonu takiben miyokardiyal koruyucu bir etkiye sahiptir. Son yıllarda yapılan klinik çalışmalarda, kalp cerrahisi sırasında ve sonrasında NO gazı uygulanması ile postoperatif miyokard hasarı ve akut böbrek hasarında önemli bir azalma olduğunu gösterilmiştir.

References

  • 1. Chello M, Mastroroberto P, Perticone F, V Celi, A Colonna. Nitric oxide modulation of neutrophil-endothelium interaction: difference between arterial and venous coronary bypass grafts. J Am Coll Cardiol 1998;31:823–6.
  • 2. Ignarro LJ. Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 2002; 53: 503-14.
  • 3. Michel T, Feron O. Nitric oxide synthases: which, where, how, and why? J Clin Invest 1997; 100: 2146-52.
  • 4. Haynes W.G, Noon J.P, Walker B.R, Webb D.J. Inhibition of nitric oxide synthesis increases blood pressure in healthy humans. J. Hypertens. 1993; 11, 1375–80.
  • 5. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989; 334, 997–1000.
  • 6. Pucci M, Lin L, Nasjletti A. Pressor and renal vasoconstrictor effects of NG-nitro-L-arginine as affected by blockade of pressor mechanisms mediated by the sympathetic nervous system, angiotensin, prostanoids and vasopressin. J. Pharmacol. Exp. Ther. 1992; 261, 240–45.
  • 7. Ahmad A, Sattar M.A, Azam M, Khan S.A, Bhatt O, Johns E.J. Interaction between nitric oxide and renal α(1)-adrenoreceptors mediated vasoconstriction in rats with left ventricular hypertrophyin Wistar Kyoto rats. PLoS ONE 2018; 13, e0189386.
  • 8. 8. Wang-Rosenke Y, Neumayer H.H, Peters H. NO signaling through cGMP in renal tissue fibrosis and beyond: Key pathway and novel therapeutic target. Curr. Med. Chem. 2008; 15, 1396–406
  • 9. 9. Nagasaka Y, Fernandez BO, Steinbicker AU, Spagnolli E, Malhotra R, Bloch DB, Zapol WM, Feelisch M. Pharmacological preconditioning with inhaled nitric oxide (NO): Organ specific differences in the lifetime of blood and tissue NO metabolites. Nitric Oxide - Biol Chem 2018;80:52–60.
  • 10. 10. Zapol WM, Nagasaka Y, Fernandez BO, Garcia-Saura MF, Petersen B, Ichinose F, Bloch KD, Feelisch M, Zapolet WM. Brief periods of nitric oxide inhalation protect against myocardial ischemia-reperfusion injury. Anesthesiology 2008;109:675–682.
  • 11. 11. Kida K, Ichinose F. Preventing ischemic brain injury after sudden cardiac arrest using NO inhalation. Crit Care 2014;18:212
  • 12. 12. Lei C, Berra L, Rezoagli E, Yu B, Dong H, Yu S, Hou L, Chen M, Chen W, Wang H, Zheng Q, Shen J, Jin Z, Chen T. Nitric Oxide Decreases Acute Kidney Injury and Stage 3 Chronic Kidney Disease after Cardiac Surgery. Am J Respir Crit Care Med 2018;198:1279–1287.
  • 13. 13. Zadek F , Spina S, Hu J, Berra L. Nitric Oxide Treatment for Lungs and Beyond. Novel Insights From Recent Literature. Am J Respir Crit Care Med. 2019;200:628-30.
  • 14. 14. Zahler S, Massoudy P, Hartl H, Hähnel C, Meisner H, Beckeret BF. Acute cardiac inflammatory responses to postischemic reperfusion during cardiopulmonary bypass. Cardiovasc Res 1999;41:722–30.
  • 15. 15. Siregar S, Groenwold, de Mol BAJM RHH, Speekenbrink RG, Versteegh MI, Brandon Bravo Bruinsma GJ, Bots ML, van der Graaf Y, van Herwerden LA. Evaluation of cardiac surgery mortality rates: 30-day mortality or longer follow-up? Eur J Cardiothoracic Surg. 2013;44:875-83.
  • 16. 16. Mazzeffi M, Zivot J, Buchman T, Halkos M. In-hospital mortality after cardiac surgery: patient characteristics, timing, and association with postoperative length of intensive care unit and hospital stay. Ann Thorac Surg. 2014;97:1220-5.
  • 17. 17. Lamy A, Devereaux PJ, Prabhakaran D, Collins JF, McDonald GO, Kozora E, Lucke JC, Baltz JH, Novitzky D; Veterans Affairs Randomized On/Off Bypass (ROOBY) Study Group. Off-pump or onpump coronary-artery bypass grafting at 30 days. N Engl J Med. 2012;366:1489-97.
  • 18. 18. Baikoussis NG, Papakonstantinou NA, Verra C, Kakouris G, Chounti M, Hountis P, Dedeilias P, Argiriou M. Mechanisms of oxidative stress and myocardial protection during open-heart surgery. Ann Card Anaesth. 2015;18:555-64.
  • 19. 19. Kawamura T, Nara N, Kadosaki M, Inada K, Endo S. Prostaglandin E1 reduces myocardial reperfusion injury by inhibiting proinflammatory cytokines production during cardiac surgery. Crit Care Med 2000;28:2201-8.
  • 20. 20. Volk T, Schmutzler M, Engelhardt L, Döcke WD, Volk HD, Konertz W, Kox WJ. Influence of aminosteroid and glucocorticoid treatment on inflammation and immune function during cardiopulmonary bypass. Crit Care Med 2001;29:2137-42.
  • 21. 21. Reynaert NL, Ckless K, Korn SH, Vos N, Guala AS, Wouters EF, van der Vliet A, Janssen-Heiningeret YMW. Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc Natl Acad Sci U S A 2004;101:8945-50.
  • 22. 22. Zeng J, He W, Qu Z, Tang Y, Zhou Q, Zhang B. Cold blood versus crystalloid cardioplegia for myocardial protection in adult cardiac surgery: A meta-analysis of randomized controlled studies. J Cardiothorac Vasc Anesth 2014;28:674-81.
  • 23. 23. Yeh CH, Chen TP, Lee CH, Wu YC, Lin YM, Lin PJ. Cardioplegia -induced cardiac arrest under cardiopulmonary bypass decreased nitric oxide production which induced cardiomyocytic apoptosis via nuclear factor kappa B activation. Shock 2007;27:422-8.
  • 24. 24. Moghimian M, Faghihi M, Karimian SM, Imani A, Houshmand F, Azizi Y. Role of central oxytocin in stress-induced cardioprotection in ischemic-reperfused heart model. J Cardiol 2013;61:79-86.
  • 25. 25. Gianetti J, Del Sarto P, Bevilacqua S, Vassalle C, De Filippis R, Kacila M, Farneti PA, Clerico A, Glauber M, Biagini A. Supplemental Nitric Oxide and Its Effect on Myocardial Injury and Function in Patients Undergoing Cardiac Surgery With Extracorporeal Circulation. J Thorac Cardiovasc Surg. 2004;127:44-50.
  • 26. 26. Kamenshchikov NO, Mandel IA, Podoksenov YK, Svirko YS, Lomivorotov VV, Mikheev SL, Kozlov BN, Shipulin VM, Nenakhova AA, Anfinogenova YJ. Nitric Oxide Provides Myocardial Protection When Added to the Cardiopulmonary Bypass Circuit During Cardiac Surgery: Randomized Trial. J Thorac Cardiovasc Surg. 2019;157:2328-36.e1.
  • 27. 27. Erikssen G, Liestøl K, Seem E, Birkeland S, Saatvedt KJ, Hoel TN, Døhlen G, Skulstad H, Svennevig JL, Thaulow E, Lindberg EL. Achievements in congenital heart defect surgery: a prospective, 40-year study of 7038 patients. Circulation 2015;131:337–46. discussion 346.
  • 28. 28. Kaltman JR, Andropoulos DB, Checchia PA, Gaynor JW, Hoffman TM, Laussen PC, Ohye RG, Pearson GD, Pigula F, Tweddell J, Wernovsky G, Del Nido P, Perioperative Working Group. Report of the pediatric heart network and national heart, lung, and blood institute working group on the perioperative management of congenital heart disease. Circulation 2010;121:2766–72.
  • 29. 29. Ma M, Guavreau K, Allan CK, Mayer JE, Jenkins JK. Causes of death after congenital heart surgery. Ann Thorac Surg. 2007; 83(4):1438–45
  • 30. 30. Zakkar M, Guida G, Suleiman MS, Angelini GD (2015) Cardiopulmonary bypass and oxidative stress. Oxid Med Cell Longev. 2015:189863
  • 31. 31. Checchia P, Bronicki R, Muenzer J, Dixon D, Raithel S, Gandhi S, Huddleston C. Nitric oxide delivery during cardiopulmonary bypass reduces postoperative morbidity in children—a randomised controlled trial. J Thorac Cardiovasc Surg 146:530–6.
  • 32. 32. James C, Millar J, Horton S, Brizard C, Molesworth C, Butt W. Nitric oxide administration during paediatric cardiopulmonary bypass: a randomised controlled trial. Intensive Care Med. 2016;42:1744-52.
  • 33. 33. Karkouti K, Wijeysundera DN, Yau TM, CallumJL, Cheng DC, Crowther M, Dupuis JY, Fremes SE, Kent B, Laflamme C, Lamy A, Legare JF, Mazer CD, McCluskey SA, Rubens FD, Sawchuk C, Beattie WS. Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation 2009;119:495–502.
  • 34. 34. Legouis D, Galichon P, Bataille A, Chevret S, Provenchère S, Boutten A, Buklas D, Fellahi JL, Hanouz JL, Hertig A. Rapid Occurrence of Chronic Kidney Disease in Patients Experiencing Reversible Acute Kidney Injury after Cardiac Surgery. Anesthesiology 2017;126:39–46.
  • 35. 35. Wang Y, Bellomo R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol. 2017;13:697–711.
  • 36. 36. Vermeulen Windsant IC, de Wit NC, Sertorio JT, van Bijnen AA, Ganushchak YM, Heijmans JH, Tanus-Santos JE, Jacobs MJ, Maessen JG, Buurman WA. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage. Front Physiol 2014;5:340.
  • 37. 37. Mamikonian LS, Mamo LB, Smith PB, Koo J, Lodge AJ, Turi JL. Cardiopulmonary bypass is associated with hemolysis and acute kidney injury in neonates, infants, and children. Pediatr Crit Care Med 2014;15:e111–9.
  • 38. 38. Deuel JW, Schaer CA, Boretti FS, Opitz L, Garcia-Rubio I, Baek JH, Spahn DR, Buehler PW, Schaer DJ. Hemoglobinuria-related acute kidney injury is driven by intrarenal oxidative reactions triggering a heme toxicity response. Cell Death Dis 2016;7:e2064.
  • 39. 39. Doyle MP, Hoekstra JW. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Biochem. 1981;14:351-8.
  • 40. 40. Hsu LL, Champion HC, Campbell-Lee SA, Bivalacqua TJ, Manci EA, Diwan BA, Schimel DM, Cochard AE, Wang X, Schechter AN, Noguchi CT, Gladwin MT. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability. Blood. 2006;109:236-40.
  • 41. 41. Vermeulen Windsant IC, de Wit NCJ, Sertorio JTC, van Bijnen AA, Ganushchak YM, Heijmans JH, Tanus-Santos JE, Jacobs MJ, Maessen JG, Buurman WA. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage. Front Physiol. 2014;5:1-9.
  • 42. 42. Satoh T, Xu Q, Wang L, Gladwin MT. Hemolysis-mediated toxicity during cardiopulmonary bypass ameliorated by inhaled nitric oxide gas. Am J Respir Crit Care Med. 2018;198:1244-6.
  • 43. 43. Berra L, Pinciroli R, Stowell CP, Wang L, Yu B, Fernandez BO, Feelisch M, Mietto C, Hod EA, Chipman D, Scherrer-Crosbie M, Bloch KD, Zapol WM. Autologous transfusion of stored red blood cells increases pulmonary artery pressure. Am J Respir Crit Care Med. 2014;190:800-7.
  • 44. 44. Hu J, Spina S, Zadek F, Kamenshchikov NO, Bittner EA, Pedemonte J, Berra L. Effect of Nitric Oxide on Postoperative Acute Kidney Injury in Patients Who Underwent Cardiopulmonary Bypass: A Systematic Review and Meta-Analysis With Trial Sequential Analysis. Ann Intensive Care. 2019;9:129.
  • 45. 45. Troncy E, Francoeur M, Salazkin I, Yang F, Charbonneau M, Leclerc G, Vinay P, Blaise G. Extra-pulmonary efects of inhaled nitric oxide in swine with and without phenylephrine. Br J Anaesth. 1997;79:631–40.
  • 46. 46. Cortazzo JA, Lichtman AD. Methemoglobinemia: a review and recommendations for management. J Cardiothorac Vasc Anesth. 2014;28:1055-9.
  • 47. 47. Petit PC, Fine DH, Vasquez GB, Gamero L, Slaughter MS, Dasse KA. The pathophysiology of nitrogen dioxide during inhaled nitric oxide therapy. ASAIO J. 2017;63:7-13.
  • 48. 48. Ichinose F, Roberts JD, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation. 2004;109:3106-11.
  • 49. 49. Lundin S, Mang H, Smithies M, Stenqvist O, Frostell C. Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. The European Study Group of Inhaled Nitric Oxide. Intensive Care Med. 1999;25:911-9.
  • 50. 50. Adhikari NKJ, Burns KEA, Friedrich JO, Granton JT, Cook DJ, Meade MO. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ. 2007;334:779.

Effects Of Nitric Oxide Administration On Cardiac And Renal Injury Durıng Cardiopulmonary Bypass

Year 2020, Volume: 3 Issue: Özel Sayı 1, 11 - 20, 22.06.2020
https://doi.org/10.36516/jocass.2020.35

Abstract

Aim: Cardiac surgery requiring cardiopulmonary bypass (CPB) application causes systemic inflammatory response, ischemia/reperfusion injury and hemolysis and causes dysfunction in various organs in the body such as heart and kidney. Exogenous nitric oxide (NO) administration during CPB has been shown to prevent these complications. NO, a gas used to treat pulmonary hypertension, protects organ perfusion by preventing vascular NO depletion. NO has a myocardial protective effect following ischemia-reperfusion. Recent clinical trials have showed a significant reduction of postoperative myocardial injury and acute kidney injury when NO gas has been administered during and after cardiac surgery.


References

  • 1. Chello M, Mastroroberto P, Perticone F, V Celi, A Colonna. Nitric oxide modulation of neutrophil-endothelium interaction: difference between arterial and venous coronary bypass grafts. J Am Coll Cardiol 1998;31:823–6.
  • 2. Ignarro LJ. Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 2002; 53: 503-14.
  • 3. Michel T, Feron O. Nitric oxide synthases: which, where, how, and why? J Clin Invest 1997; 100: 2146-52.
  • 4. Haynes W.G, Noon J.P, Walker B.R, Webb D.J. Inhibition of nitric oxide synthesis increases blood pressure in healthy humans. J. Hypertens. 1993; 11, 1375–80.
  • 5. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989; 334, 997–1000.
  • 6. Pucci M, Lin L, Nasjletti A. Pressor and renal vasoconstrictor effects of NG-nitro-L-arginine as affected by blockade of pressor mechanisms mediated by the sympathetic nervous system, angiotensin, prostanoids and vasopressin. J. Pharmacol. Exp. Ther. 1992; 261, 240–45.
  • 7. Ahmad A, Sattar M.A, Azam M, Khan S.A, Bhatt O, Johns E.J. Interaction between nitric oxide and renal α(1)-adrenoreceptors mediated vasoconstriction in rats with left ventricular hypertrophyin Wistar Kyoto rats. PLoS ONE 2018; 13, e0189386.
  • 8. 8. Wang-Rosenke Y, Neumayer H.H, Peters H. NO signaling through cGMP in renal tissue fibrosis and beyond: Key pathway and novel therapeutic target. Curr. Med. Chem. 2008; 15, 1396–406
  • 9. 9. Nagasaka Y, Fernandez BO, Steinbicker AU, Spagnolli E, Malhotra R, Bloch DB, Zapol WM, Feelisch M. Pharmacological preconditioning with inhaled nitric oxide (NO): Organ specific differences in the lifetime of blood and tissue NO metabolites. Nitric Oxide - Biol Chem 2018;80:52–60.
  • 10. 10. Zapol WM, Nagasaka Y, Fernandez BO, Garcia-Saura MF, Petersen B, Ichinose F, Bloch KD, Feelisch M, Zapolet WM. Brief periods of nitric oxide inhalation protect against myocardial ischemia-reperfusion injury. Anesthesiology 2008;109:675–682.
  • 11. 11. Kida K, Ichinose F. Preventing ischemic brain injury after sudden cardiac arrest using NO inhalation. Crit Care 2014;18:212
  • 12. 12. Lei C, Berra L, Rezoagli E, Yu B, Dong H, Yu S, Hou L, Chen M, Chen W, Wang H, Zheng Q, Shen J, Jin Z, Chen T. Nitric Oxide Decreases Acute Kidney Injury and Stage 3 Chronic Kidney Disease after Cardiac Surgery. Am J Respir Crit Care Med 2018;198:1279–1287.
  • 13. 13. Zadek F , Spina S, Hu J, Berra L. Nitric Oxide Treatment for Lungs and Beyond. Novel Insights From Recent Literature. Am J Respir Crit Care Med. 2019;200:628-30.
  • 14. 14. Zahler S, Massoudy P, Hartl H, Hähnel C, Meisner H, Beckeret BF. Acute cardiac inflammatory responses to postischemic reperfusion during cardiopulmonary bypass. Cardiovasc Res 1999;41:722–30.
  • 15. 15. Siregar S, Groenwold, de Mol BAJM RHH, Speekenbrink RG, Versteegh MI, Brandon Bravo Bruinsma GJ, Bots ML, van der Graaf Y, van Herwerden LA. Evaluation of cardiac surgery mortality rates: 30-day mortality or longer follow-up? Eur J Cardiothoracic Surg. 2013;44:875-83.
  • 16. 16. Mazzeffi M, Zivot J, Buchman T, Halkos M. In-hospital mortality after cardiac surgery: patient characteristics, timing, and association with postoperative length of intensive care unit and hospital stay. Ann Thorac Surg. 2014;97:1220-5.
  • 17. 17. Lamy A, Devereaux PJ, Prabhakaran D, Collins JF, McDonald GO, Kozora E, Lucke JC, Baltz JH, Novitzky D; Veterans Affairs Randomized On/Off Bypass (ROOBY) Study Group. Off-pump or onpump coronary-artery bypass grafting at 30 days. N Engl J Med. 2012;366:1489-97.
  • 18. 18. Baikoussis NG, Papakonstantinou NA, Verra C, Kakouris G, Chounti M, Hountis P, Dedeilias P, Argiriou M. Mechanisms of oxidative stress and myocardial protection during open-heart surgery. Ann Card Anaesth. 2015;18:555-64.
  • 19. 19. Kawamura T, Nara N, Kadosaki M, Inada K, Endo S. Prostaglandin E1 reduces myocardial reperfusion injury by inhibiting proinflammatory cytokines production during cardiac surgery. Crit Care Med 2000;28:2201-8.
  • 20. 20. Volk T, Schmutzler M, Engelhardt L, Döcke WD, Volk HD, Konertz W, Kox WJ. Influence of aminosteroid and glucocorticoid treatment on inflammation and immune function during cardiopulmonary bypass. Crit Care Med 2001;29:2137-42.
  • 21. 21. Reynaert NL, Ckless K, Korn SH, Vos N, Guala AS, Wouters EF, van der Vliet A, Janssen-Heiningeret YMW. Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc Natl Acad Sci U S A 2004;101:8945-50.
  • 22. 22. Zeng J, He W, Qu Z, Tang Y, Zhou Q, Zhang B. Cold blood versus crystalloid cardioplegia for myocardial protection in adult cardiac surgery: A meta-analysis of randomized controlled studies. J Cardiothorac Vasc Anesth 2014;28:674-81.
  • 23. 23. Yeh CH, Chen TP, Lee CH, Wu YC, Lin YM, Lin PJ. Cardioplegia -induced cardiac arrest under cardiopulmonary bypass decreased nitric oxide production which induced cardiomyocytic apoptosis via nuclear factor kappa B activation. Shock 2007;27:422-8.
  • 24. 24. Moghimian M, Faghihi M, Karimian SM, Imani A, Houshmand F, Azizi Y. Role of central oxytocin in stress-induced cardioprotection in ischemic-reperfused heart model. J Cardiol 2013;61:79-86.
  • 25. 25. Gianetti J, Del Sarto P, Bevilacqua S, Vassalle C, De Filippis R, Kacila M, Farneti PA, Clerico A, Glauber M, Biagini A. Supplemental Nitric Oxide and Its Effect on Myocardial Injury and Function in Patients Undergoing Cardiac Surgery With Extracorporeal Circulation. J Thorac Cardiovasc Surg. 2004;127:44-50.
  • 26. 26. Kamenshchikov NO, Mandel IA, Podoksenov YK, Svirko YS, Lomivorotov VV, Mikheev SL, Kozlov BN, Shipulin VM, Nenakhova AA, Anfinogenova YJ. Nitric Oxide Provides Myocardial Protection When Added to the Cardiopulmonary Bypass Circuit During Cardiac Surgery: Randomized Trial. J Thorac Cardiovasc Surg. 2019;157:2328-36.e1.
  • 27. 27. Erikssen G, Liestøl K, Seem E, Birkeland S, Saatvedt KJ, Hoel TN, Døhlen G, Skulstad H, Svennevig JL, Thaulow E, Lindberg EL. Achievements in congenital heart defect surgery: a prospective, 40-year study of 7038 patients. Circulation 2015;131:337–46. discussion 346.
  • 28. 28. Kaltman JR, Andropoulos DB, Checchia PA, Gaynor JW, Hoffman TM, Laussen PC, Ohye RG, Pearson GD, Pigula F, Tweddell J, Wernovsky G, Del Nido P, Perioperative Working Group. Report of the pediatric heart network and national heart, lung, and blood institute working group on the perioperative management of congenital heart disease. Circulation 2010;121:2766–72.
  • 29. 29. Ma M, Guavreau K, Allan CK, Mayer JE, Jenkins JK. Causes of death after congenital heart surgery. Ann Thorac Surg. 2007; 83(4):1438–45
  • 30. 30. Zakkar M, Guida G, Suleiman MS, Angelini GD (2015) Cardiopulmonary bypass and oxidative stress. Oxid Med Cell Longev. 2015:189863
  • 31. 31. Checchia P, Bronicki R, Muenzer J, Dixon D, Raithel S, Gandhi S, Huddleston C. Nitric oxide delivery during cardiopulmonary bypass reduces postoperative morbidity in children—a randomised controlled trial. J Thorac Cardiovasc Surg 146:530–6.
  • 32. 32. James C, Millar J, Horton S, Brizard C, Molesworth C, Butt W. Nitric oxide administration during paediatric cardiopulmonary bypass: a randomised controlled trial. Intensive Care Med. 2016;42:1744-52.
  • 33. 33. Karkouti K, Wijeysundera DN, Yau TM, CallumJL, Cheng DC, Crowther M, Dupuis JY, Fremes SE, Kent B, Laflamme C, Lamy A, Legare JF, Mazer CD, McCluskey SA, Rubens FD, Sawchuk C, Beattie WS. Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation 2009;119:495–502.
  • 34. 34. Legouis D, Galichon P, Bataille A, Chevret S, Provenchère S, Boutten A, Buklas D, Fellahi JL, Hanouz JL, Hertig A. Rapid Occurrence of Chronic Kidney Disease in Patients Experiencing Reversible Acute Kidney Injury after Cardiac Surgery. Anesthesiology 2017;126:39–46.
  • 35. 35. Wang Y, Bellomo R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol. 2017;13:697–711.
  • 36. 36. Vermeulen Windsant IC, de Wit NC, Sertorio JT, van Bijnen AA, Ganushchak YM, Heijmans JH, Tanus-Santos JE, Jacobs MJ, Maessen JG, Buurman WA. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage. Front Physiol 2014;5:340.
  • 37. 37. Mamikonian LS, Mamo LB, Smith PB, Koo J, Lodge AJ, Turi JL. Cardiopulmonary bypass is associated with hemolysis and acute kidney injury in neonates, infants, and children. Pediatr Crit Care Med 2014;15:e111–9.
  • 38. 38. Deuel JW, Schaer CA, Boretti FS, Opitz L, Garcia-Rubio I, Baek JH, Spahn DR, Buehler PW, Schaer DJ. Hemoglobinuria-related acute kidney injury is driven by intrarenal oxidative reactions triggering a heme toxicity response. Cell Death Dis 2016;7:e2064.
  • 39. 39. Doyle MP, Hoekstra JW. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Biochem. 1981;14:351-8.
  • 40. 40. Hsu LL, Champion HC, Campbell-Lee SA, Bivalacqua TJ, Manci EA, Diwan BA, Schimel DM, Cochard AE, Wang X, Schechter AN, Noguchi CT, Gladwin MT. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability. Blood. 2006;109:236-40.
  • 41. 41. Vermeulen Windsant IC, de Wit NCJ, Sertorio JTC, van Bijnen AA, Ganushchak YM, Heijmans JH, Tanus-Santos JE, Jacobs MJ, Maessen JG, Buurman WA. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage. Front Physiol. 2014;5:1-9.
  • 42. 42. Satoh T, Xu Q, Wang L, Gladwin MT. Hemolysis-mediated toxicity during cardiopulmonary bypass ameliorated by inhaled nitric oxide gas. Am J Respir Crit Care Med. 2018;198:1244-6.
  • 43. 43. Berra L, Pinciroli R, Stowell CP, Wang L, Yu B, Fernandez BO, Feelisch M, Mietto C, Hod EA, Chipman D, Scherrer-Crosbie M, Bloch KD, Zapol WM. Autologous transfusion of stored red blood cells increases pulmonary artery pressure. Am J Respir Crit Care Med. 2014;190:800-7.
  • 44. 44. Hu J, Spina S, Zadek F, Kamenshchikov NO, Bittner EA, Pedemonte J, Berra L. Effect of Nitric Oxide on Postoperative Acute Kidney Injury in Patients Who Underwent Cardiopulmonary Bypass: A Systematic Review and Meta-Analysis With Trial Sequential Analysis. Ann Intensive Care. 2019;9:129.
  • 45. 45. Troncy E, Francoeur M, Salazkin I, Yang F, Charbonneau M, Leclerc G, Vinay P, Blaise G. Extra-pulmonary efects of inhaled nitric oxide in swine with and without phenylephrine. Br J Anaesth. 1997;79:631–40.
  • 46. 46. Cortazzo JA, Lichtman AD. Methemoglobinemia: a review and recommendations for management. J Cardiothorac Vasc Anesth. 2014;28:1055-9.
  • 47. 47. Petit PC, Fine DH, Vasquez GB, Gamero L, Slaughter MS, Dasse KA. The pathophysiology of nitrogen dioxide during inhaled nitric oxide therapy. ASAIO J. 2017;63:7-13.
  • 48. 48. Ichinose F, Roberts JD, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation. 2004;109:3106-11.
  • 49. 49. Lundin S, Mang H, Smithies M, Stenqvist O, Frostell C. Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. The European Study Group of Inhaled Nitric Oxide. Intensive Care Med. 1999;25:911-9.
  • 50. 50. Adhikari NKJ, Burns KEA, Friedrich JO, Granton JT, Cook DJ, Meade MO. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ. 2007;334:779.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Anaesthesiology
Journal Section Reviews
Authors

Feride Karacaer 0000-0002-1048-6505

Publication Date June 22, 2020
Acceptance Date June 10, 2020
Published in Issue Year 2020 Volume: 3 Issue: Özel Sayı 1

Cite

APA Karacaer, F. (2020). Kardiyopulmoner Bypass Sırasında Nitrik Oksit Kullanımının Kardiyak ve Renal Hasar Üzerine Etkileri. Journal of Cukurova Anesthesia and Surgical Sciences, 3(Özel Sayı 1), 11-20. https://doi.org/10.36516/jocass.2020.35

download

You are free to:
Share — copy and redistribute the material in any medium or format The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes. NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.