Clinical Research
BibTex RIS Cite

Multipl Sklerozlu Hastalarda Servikal Spinal Kord Atrofisinin Manyetik Rezonans Görüntüleme ile Değerlendirilmesi:

Year 2022, Volume: 5 Issue: 2, 101 - 106, 31.08.2022
https://doi.org/10.36516/jocass.1109857

Abstract

Amaç: Multipl skleroz (MS), beyin ve spinal kord (SK) demiyelinizasyon ve nörodejenerasyona yol açan inflamatuar bir hastalığıdır. MS hastalarında servikal kord atrofisi ile maluliyet arasındaki ilişki gösterilmiştir.
Yöntemler: Muayeneler MR-Philips Medical System 1.5 tesla cihazı ile sagital ve aksiyel planda T1-WI ve T2-WI ile yapıldı. Görüntüler deneyimli iki radyolog tarafından hastane görüntü arşiv sistemi aracılığıyla değerlendirildi.
Bulgular: C3 vertebra seviyesinden sagital düzlem ölçümünde MS grubundaki hastaların ortalama SK ölçümü 7,3 ± 0,7 milimetre (mm), kontrol grubunun ortalaması ise 8,3 ± 0,6 idi. C6 vertebra seviyesinden sagital düzlem ölçümünde MS grubundaki hastaların ortalama SK ölçümü 6.9 ± 0.7 mm, kontrol grubunun ortalaması 7.8 ± 0.5 idi. Tüm seviyelerde yapılan ölçümlerde MS grubu hastalarda kontrol grubuna göre SK kalınlıkları daha düşüktü ve bu azalma istatistiksel olarak anlamlıydı.
Sonuç: Günlük pratikte MS hastalarında servikal omurilik ölçümleri iki boyutlu konvansiyonel MRG ile kolay ve hızlı bir şekilde yapılabilmektedir.

Supporting Institution

yok

References

  • 1. Rocca MA, Horsfield MA, Sala S, et al. A multicenter assessment of cervical cord atrophy among MS clinical phenotypes. Neurology. 2011;76(24):2096-2102. doi:10.1212/WNL.0b013e31821f46b8
  • 2. De Stefano N, Giorgio A, Battaglini M, et al. Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology. 2010;74(23):1868-1876. doi:10.1212/WNL.0b013e3181e24136
  • 3. Abdel-Aziz K, Schneider T, Solanky BS, et al. Evidence for early neurodegeneration in the cervical cord of patients with primary progressive multiple sclerosis. Brain. 2015;138(6):1568-1582. doi:10.1093/brain/awv086
  • 4. Bakshi R, Thompson AJ, Rocca MA, et al. MRI in multiple sclerosis: current status and future prospects. The Lancet Neurology. 2008;7(7):615-625. doi:10.1016/S1474-4422(08)70137-6
  • 5. Weier K, Mazraeh J, Naegelin Y, et al. Biplanar MRI for the assessment of the spinal cord in multiple sclerosis. Mult Scler. 2012;18(11):1560-1569. doi:10.1177/1352458512442754
  • 6. Kearney H, Miller DH, Ciccarelli O. Spinal cord MRI in multiple sclerosis—diagnostic, prognostic and clinical value. Nat Rev Neurol. 2015;11(6):327-338. doi:10.1038/nrneurol.2015.80
  • 7. Sombekke MH, Wattjes MP, Balk LJ, et al. Spinal cord lesions in patients with clinically isolated syndrome: A powerful tool in diagnosis and prognosis. Neurology. 2013;80(1):69-75. doi:10.1212/WNL.0b013e31827b1a67
  • 8. Lin X, Tench CR, Evangelou N, Jaspan T, Constantinescu CS. Measurement of Spinal Cord Atrophy in Multiple Sclerosis. Journal of Neuroimaging. 2004; 14:20S-26S. doi:10.1111/j.1552-6569.2004.tb00275.x
  • 9. Lukas C, Sombekke MH, Bellenberg B, et al. Relevance of Spinal Cord Abnormalities to Clinical Disability in Multiple Sclerosis: MR Imaging Findings in a Large Cohort of Patients. Radiology. 2013;269(2):542-552. doi:10.1148/radiol.13122566
  • 10. Lukas C, Knol DL, Sombekke MH, et al. Cervical spinal cord volume loss is related to clinical disability progression in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015;86(4):410-418. doi:10.1136/jnnp-2014-308021
  • 11. Schlaeger R, Papinutto N, Zhu AH, et al. Association Between Thoracic Spinal Cord Gray Matter Atrophy and Disability in Multiple Sclerosis. JAMA Neurol. 2015;72(8):897. doi:10.1001/jamaneurol.2015.0993
  • 12. Stroman PW, Wheeler-Kingshott C, Bacon M, et al. The current state-of-the-art of spinal cord imaging: Methods. NeuroImage. 2014; 84:1070-1081. doi: 10.1016/j.neuroimage.2013.04.124
  • 13. Gass A, Rocca MA, Agosta F, et al. MRI monitoring of pathological changes in the spinal cord in patients with multiple sclerosis. The Lancet Neurology. 2015;14(4):443-454. doi:10.1016/S1474-4422(14)70294-7
  • 14. Ulbrich EJ, Schraner C, Boesch C, et al. Normative MR Cervical Spinal Canal Dimensions. Radiology. 2014;271(1):172-182. doi:10.1148/radiol.13120370
  • 15. Bot JCJ, Barkhof F, à Nijeholt GL, et al. Differentiation of Multiple Sclerosis from Other Inflammatory Disorders and Cerebrovascular Disease: Value of Spinal MR Imaging. Radiology. 2002;223(1):46-56. doi:10.1148/radiol.2231010707
  • 16. Evangelou N. Pathological study of spinal cord atrophy in multiple sclerosis suggests limited role of local lesions. Brain. 2004;128(1):29-34. doi:10.1093/brain/awh323
  • 17. Bot JCJ, Blezer ELA, Kamphorst W, et al. The Spinal Cord in Multiple Sclerosis: Relationship of High-Spatial-Resolution Quantitative MR Imaging Findings to Histopathologic Results. Radiology. 2004;233(2):531-540. doi:10.1148/radiol.2332031572
  • 18. Kalkers NF, Barkhof F, Bergers E, van Schijndel R, Polman CH. The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Mult Scler. 2002;8(6):532-533. doi:10.1191/1352458502ms849xx
  • 19. Daams M, Weiler F, Steenwijk MD, et al. Mean upper cervical cord area (MUCCA) measurement in long-standing multiple sclerosis: Relation to brain findings and clinical disability. Mult Scler. 2014;20(14):1860-1865. doi:10.1177/1352458514533399
  • 20. Kearney H, Rocca M, Valsasina P, et al. Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Mult Scler. 2014;20(1):72-80. doi:10.1177/1352458513492245
  • 21. Kearney H, Yiannakas MC, Abdel-Aziz K, et al. Improved MRI quantification of spinal cord atrophy in multiple sclerosis: Cord Atrophy in MS. J Magn Reson Imaging. 2014;39(3):617-623. doi:10.1002/jmri.24194
  • 22. Horsfield MA, Sala S, Neema M, et al. Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: Application in multiple sclerosis. NeuroImage. 2010;50(2):446-455. doi: 10.1016/j.neuroimage.2009.12.121
  • 23. Losseff NA, Webb SL, O’Riordan JI, et al. Spinal cord atrophy and disability in multiple sclerosis: A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain. 1996;119(3):701-708. doi:10.1093/brain/119.3.701
  • 24. Tsagkas C, Magon S, Gaetano L, et al. Spinal cord volume loss: A marker of disease progression in multiple sclerosis. Neurology. 2018;91(4):e349-e358. doi:10.1212/WNL.0000000000005853

Evaluation of Cervical Spinal Cord Atrophy by Magnetic Resonance Imaging in Patients with Multiple Sclerosis

Year 2022, Volume: 5 Issue: 2, 101 - 106, 31.08.2022
https://doi.org/10.36516/jocass.1109857

Abstract

Background: Multiple sclerosis (MS) is an inflammatory disease of the brain and spinal cord (SC) that leads to demyelination and neurodegeneration. The relationship between cervical cord atrophy and disability in MS patients was demonstrated.
Methods: The examinations were made with MR-Philips Medical System 1.5 tesla device in sagittal and axial planes with T1-WI and T2-WI. Images were evaluated by two experienced radiologists through the hospital image archive system.
Results: In the sagittal plane measurement from the C3 vertebra level, the mean SC measurement of the patients in the MS group was 7.3 ± 0.7 millimeters (mm), while the mean of the control group was 8.3 ± 0.6. In the sagittal plane measurement from the C6 vertebra level, the mean SC measurement of the patients in the MS group was 6.9 ± 0.7 mm, while the mean of the control group was 7.8 ± 0.5. In the measurements made at all levels, SC thicknesses were lower in MS group patients compared to control group patients, and this decrease was statistically significant.
Conclusion: In daily practice, cervical spinal cord measurements in MS patients can be easily and quickly performed with conventional MRI in two dimensions.

References

  • 1. Rocca MA, Horsfield MA, Sala S, et al. A multicenter assessment of cervical cord atrophy among MS clinical phenotypes. Neurology. 2011;76(24):2096-2102. doi:10.1212/WNL.0b013e31821f46b8
  • 2. De Stefano N, Giorgio A, Battaglini M, et al. Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology. 2010;74(23):1868-1876. doi:10.1212/WNL.0b013e3181e24136
  • 3. Abdel-Aziz K, Schneider T, Solanky BS, et al. Evidence for early neurodegeneration in the cervical cord of patients with primary progressive multiple sclerosis. Brain. 2015;138(6):1568-1582. doi:10.1093/brain/awv086
  • 4. Bakshi R, Thompson AJ, Rocca MA, et al. MRI in multiple sclerosis: current status and future prospects. The Lancet Neurology. 2008;7(7):615-625. doi:10.1016/S1474-4422(08)70137-6
  • 5. Weier K, Mazraeh J, Naegelin Y, et al. Biplanar MRI for the assessment of the spinal cord in multiple sclerosis. Mult Scler. 2012;18(11):1560-1569. doi:10.1177/1352458512442754
  • 6. Kearney H, Miller DH, Ciccarelli O. Spinal cord MRI in multiple sclerosis—diagnostic, prognostic and clinical value. Nat Rev Neurol. 2015;11(6):327-338. doi:10.1038/nrneurol.2015.80
  • 7. Sombekke MH, Wattjes MP, Balk LJ, et al. Spinal cord lesions in patients with clinically isolated syndrome: A powerful tool in diagnosis and prognosis. Neurology. 2013;80(1):69-75. doi:10.1212/WNL.0b013e31827b1a67
  • 8. Lin X, Tench CR, Evangelou N, Jaspan T, Constantinescu CS. Measurement of Spinal Cord Atrophy in Multiple Sclerosis. Journal of Neuroimaging. 2004; 14:20S-26S. doi:10.1111/j.1552-6569.2004.tb00275.x
  • 9. Lukas C, Sombekke MH, Bellenberg B, et al. Relevance of Spinal Cord Abnormalities to Clinical Disability in Multiple Sclerosis: MR Imaging Findings in a Large Cohort of Patients. Radiology. 2013;269(2):542-552. doi:10.1148/radiol.13122566
  • 10. Lukas C, Knol DL, Sombekke MH, et al. Cervical spinal cord volume loss is related to clinical disability progression in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015;86(4):410-418. doi:10.1136/jnnp-2014-308021
  • 11. Schlaeger R, Papinutto N, Zhu AH, et al. Association Between Thoracic Spinal Cord Gray Matter Atrophy and Disability in Multiple Sclerosis. JAMA Neurol. 2015;72(8):897. doi:10.1001/jamaneurol.2015.0993
  • 12. Stroman PW, Wheeler-Kingshott C, Bacon M, et al. The current state-of-the-art of spinal cord imaging: Methods. NeuroImage. 2014; 84:1070-1081. doi: 10.1016/j.neuroimage.2013.04.124
  • 13. Gass A, Rocca MA, Agosta F, et al. MRI monitoring of pathological changes in the spinal cord in patients with multiple sclerosis. The Lancet Neurology. 2015;14(4):443-454. doi:10.1016/S1474-4422(14)70294-7
  • 14. Ulbrich EJ, Schraner C, Boesch C, et al. Normative MR Cervical Spinal Canal Dimensions. Radiology. 2014;271(1):172-182. doi:10.1148/radiol.13120370
  • 15. Bot JCJ, Barkhof F, à Nijeholt GL, et al. Differentiation of Multiple Sclerosis from Other Inflammatory Disorders and Cerebrovascular Disease: Value of Spinal MR Imaging. Radiology. 2002;223(1):46-56. doi:10.1148/radiol.2231010707
  • 16. Evangelou N. Pathological study of spinal cord atrophy in multiple sclerosis suggests limited role of local lesions. Brain. 2004;128(1):29-34. doi:10.1093/brain/awh323
  • 17. Bot JCJ, Blezer ELA, Kamphorst W, et al. The Spinal Cord in Multiple Sclerosis: Relationship of High-Spatial-Resolution Quantitative MR Imaging Findings to Histopathologic Results. Radiology. 2004;233(2):531-540. doi:10.1148/radiol.2332031572
  • 18. Kalkers NF, Barkhof F, Bergers E, van Schijndel R, Polman CH. The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Mult Scler. 2002;8(6):532-533. doi:10.1191/1352458502ms849xx
  • 19. Daams M, Weiler F, Steenwijk MD, et al. Mean upper cervical cord area (MUCCA) measurement in long-standing multiple sclerosis: Relation to brain findings and clinical disability. Mult Scler. 2014;20(14):1860-1865. doi:10.1177/1352458514533399
  • 20. Kearney H, Rocca M, Valsasina P, et al. Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Mult Scler. 2014;20(1):72-80. doi:10.1177/1352458513492245
  • 21. Kearney H, Yiannakas MC, Abdel-Aziz K, et al. Improved MRI quantification of spinal cord atrophy in multiple sclerosis: Cord Atrophy in MS. J Magn Reson Imaging. 2014;39(3):617-623. doi:10.1002/jmri.24194
  • 22. Horsfield MA, Sala S, Neema M, et al. Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: Application in multiple sclerosis. NeuroImage. 2010;50(2):446-455. doi: 10.1016/j.neuroimage.2009.12.121
  • 23. Losseff NA, Webb SL, O’Riordan JI, et al. Spinal cord atrophy and disability in multiple sclerosis: A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain. 1996;119(3):701-708. doi:10.1093/brain/119.3.701
  • 24. Tsagkas C, Magon S, Gaetano L, et al. Spinal cord volume loss: A marker of disease progression in multiple sclerosis. Neurology. 2018;91(4):e349-e358. doi:10.1212/WNL.0000000000005853
There are 24 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Articles
Authors

Mehmet Akçiçek 0000-0002-0232-1284

Mehtap Ilgar 0000-0001-9064-8123

Serkan Ünlü 0000-0001-7535-0812

Early Pub Date August 18, 2022
Publication Date August 31, 2022
Acceptance Date June 13, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Akçiçek, M., Ilgar, M., & Ünlü, S. (2022). Evaluation of Cervical Spinal Cord Atrophy by Magnetic Resonance Imaging in Patients with Multiple Sclerosis. Journal of Cukurova Anesthesia and Surgical Sciences, 5(2), 101-106. https://doi.org/10.36516/jocass.1109857

download

You are free to:
Share — copy and redistribute the material in any medium or format The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes. NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.