Review
BibTex RIS Cite

Pediyatrik kalp cerrahisinde hasta kan yönetimi

Year 2025, Volume: 8 Issue: 1, 12 - 18

Abstract

Açık kalp ameliyatı geçiren pediatrik hastalar, hemostatik sistemlerindeki gelişimsel değişiklikler ve kardiyopulmoner bypassa bağlı inflamasyon, antikoagülan kullanımı, hemodilüsyon ve koagülopati nedeniyle sıklıkla allojenik kan ürünlerine maruz kalmaktadır. Cerrahi prosedürlerin karmaşıklığı, kompleks kardiyopulmoner etkileşimler, yetersiz oksijen iletimi ve postoperatif kanama riski kan ürünlerinin kullanımını arttırmaktadır. Kan ürünü transfüzyonunu en aza indirmeyi amaçlayan hasta kan yönetimi, aynı zamanda daha iyi klinik sonuçlarla ilişkilidir. Ameliyat öncesi, sırası ve sonrası dönemi kapsayan güvenli konservatif kan yönetimi uygulamaları, kan ürünü transfüzyonunun azalmasıyla sonuçlanmaktadır. Bu derleme, kalp ameliyatı geçiren çocukların perioperatif bakımında anemi yönetimi ve kan transfüzyonu uygulamalarına ilişkin mevcut kanıtları özetlemektedir.

References

  • 1.Sebastian R, Ahmed MI. Blood Conservation and Hemostasis Management in Pediatric Cardiac Surgery. Front Cardiovasc Med. 2021;19:8:689623 https://doi.org/10.3389/fcvm.2021.689623
  • 2.Kipps AK, Wypij D, Thiagarajan RR, et al. Blood transfusion is associated with prolonged duration of mechanical ventilation in infants undergoing reparative cardiac surgery. Pediatr Crit Care Med. 2011;12:52-6. https://doi.org/10.1097/PCC.0b013e3181e30d43
  • 3.Iyengar A, Scipione CN, Sheth P, et al. Association of complications with blood transfusions in pediatric cardiac surgery patients. Ann Thorac Surg. 2013;96:910-6. https://doi.org/10.1016/j.athoracsur.2013.05.003
  • 4.Redlin M, Kukucka M, Boettcher W, et al. Blood transfusion determines postoperative morbidity in pediatric cardiac surgery applying a comprehensive blood-sparing approach. J Thorac Cardiovasc Surg. 2013;146:537-42. https://doi.org/10.1016/j.jtcvs.2012.09.101
  • 5.Clifford L, Jia Q, Yadav H et al. Characterizing the epidemiology of perioperative transfusion associated circulatory overload. Anesthesiology 2015;122:21-8. https://doi.org/10.1097/ALN.0000000000000513
  • 6.Toy P, Gajic O, Bacchettiet P al. Transfusion-related acute lung injury: incidence and risk factors. Blood. 2012;119:1757-67. https://doi.org/10.1182/blood-2011-08-370932
  • 7.Zou S, et al. Prevalence, incidence, and residual risk of human immunodeficiency virus and hepatitis C virus infections among United States blood donors since the introduction of nucleic acid testing. Transfusion 2010;50:1495-504. https://doi.org/10.1111/j.1537-2995.2010.02622.x
  • 8.Lavoie J. Blood transfusion risks and alternative strategies in pediatric patients. Paediatr Anaesth 2011;21:14-24. https://doi.org/10.1111/j.1460-9592.2010.03470.x
  • 9.Shander A, Bracey AW Jr, Goodnough LT, et al. Patient blood management as standard of care. Anesth Analg. 2016;123:1051-53. https://doi.org/10.1213/ANE.0000000000001496
  • 10.Goobie SM, Haas T. Perioperative bleeding management in pediatric surgery. Curr Opin Anaesthesiol. 2016;29:352-8. https://doi.org/10.1097/ACO.0000000000000308
  • 11.Gammon R, Al-Mozain N, Auron M. Transfusion therapy of neonatal and paediatric patients: They are not just little adults. Transfus Med. 2022;32:448-59. https://doi.org/10.1111/tme.12921
  • 12.Hassan N, Halanski M, Wincek J, et al. Blood management in pediatric spinal deformity surgery: review of a 2-year experience. Transfusion. 2011;51:2133-41. https://doi.org/10.1111/j.1537-2995.2011.03175.x
  • 13.Cholette JM, Faraoni D, Goobie SM. Patient Blood Management in Pediatric Cardiac Surgery: A Review. Anesth Analg. 2018;127:1002-16. https://doi.org/10.1213/ANE.0000000000002504
  • 14.Faraoni D, Meier J, New HV. Patient Blood Management for Neonates and Children Undergoing Cardiac Surgery: 2019 NATA Guidelines. J Cardiothorac Vasc Anesth. 2019;33:3249-63. https://doi.org/10.1053/j.jvca.2019.03.036
  • 15.Otsuka Y, Naraine N, Switzer T. Preoperative Iron Supplementation in Pediatric Cardiac Surgical Patients: A Preliminary Single-Center Experience. J Cardiothorac Vasc Anesth. 2022;36(6):1565-70. https://doi.org/10.1053/j.jvca.2021.12.022
  • 16.Goodnough LT, Shander A, Spivak JL, et al. Detection, evaluation, and management of anemia in the elective surgical patient. Anesth Analg 2005;101:1858-61. https://doi.org/10.1213/01.ANE.0000184124.29397.EB
  • 17.Gao P, Wang X, Zhang P, et al. Preoperative iron deficiency is associated with increased blood transfusion in infants undergoing cardiac surgery. 2022; 2:9:887535. https://doi.org/10.3389/fcvm.2022.887535
  • 18.Meyer HM, Torborg A, Cronje L, et al. The association between preoperative anemia and postoperative morbidity in pediatric surgical patients: A secondary analysis of a prospective observational cohort study. Paediatr Anaesth 2020;30:759-65. https://doi.org/10.1111/pan.13872
  • 19.Mulaj M, Faraoni D, Willems A, et al. Predictive factors for red blood cell transfusion in children undergoing noncomplex cardiac surgery. Ann Thorac Surg 2014;98:662-7. https://doi.org/10.1016/j.athoracsur.2014.04.089
  • 20.Boos V, Buhrer C, Berger F. Preoperative anemia and outcomes after corrective surgery in neonates with dextro-transposition of the great arteries. J Cardiothorac Vasc Anesth 2021;35:2900-6. https://doi.org/10.1053/j.jvca.2021.02.038
  • 21.Corwin HL, Shander A, Speiss B, et al. Management of perioperative iron deficiency in cardiac surgery: A modified RAND Delphi study. Ann Thorac Surg 2022;113:316-23. https://doi.org/10.1016/j.athoracsur.2020.11.031
  • 22.Yang SS, Al Kharusi L, Gosselin A, et al. Iron supplementation for patients undergoing cardiac surgery: A systematic review and meta-analysis of randomized controlled trials. Can J Anaesth 2022;69:129-39. https://doi.org/10.1007/s12630-021-02113-z
  • 23.Hassan N, Boville B, Reischmann D, et al. Intravenous ferumoxytol in pediatric patients with iron deficiency anemia: a single-center experience. Ann Pharmacother. 2017;51:548-54. https://doi.org/10.1177/1060028017699429
  • 24.Ootaki Y, Yamaguchi M, Yoshimura N. The efficacy of preoperative administration of a single dose of recombinant human erythropoietin in pediatric cardiac surgery. Heart Surg Forum. 2007;10:E115-9. https://doi.org/10.1532/HSF98.20061183
  • 25.Faraoni D, Meier J, New HV et al. Patient Blood Management for Neonates and Children Undergoing Cardiac Surgery: 2019 NATA Guidelines. 2019;33:3249-63. https://doi.org/10.1053/j.jvca.2019.03.036
  • 26.Van der Linden P. The physiology of acute isovolaemic anaemia. Acta Anaesthesiol Belg. 2002;53:97-103.
  • 27.Bhananker SM, Ramamoorthy C, Geiduschek JM et al. Anesthesia-related cardiac arrest in children: update from the Pediatric Perioperative Cardiac Arrest Registry. Anesth Analg. 2007;105:344-50 https://doi.org/10.1213/01.ane.0000268712.00756.dd
  • 28.Sebastian R, Ratliff T, Winch PD et al. Revisiting acute normovolemic hemodilution and blood transfusion during pediatric cardiac surgery: a prospective observational study. Paediatr Anaesth. 2017;27:85-90. https://doi.org/10.1111/pan.13014
  • 29.Harris WM, Treggiari MM, LeBlanc A et al. Randomized Pilot Trial of Acute Normovolemic Hemodilution in Pediatric Cardiac Surgery Patients. World J Pediatr Congenit Heart Surg. 2020;11:452-8. https://doi.org/10.1177/2150135120923627 30.Singh SP. Strategies for blood conservation in pediatric cardiac surgery. Ann Card Anaesth. 2016;19:705-16.https://doi.org/10.4103/0971-9784.191562
  • 31.Seyfried T, Breu A, Gruber M, et al. Processing of small volumes in blood salvage devices. Transfusion. 2014;54:2775-81. https://doi.org/10.1111/trf.12765
  • 32.Golab HD, Scohy TV, de Jong PL, et al. Intraoperative cell salvage in infants undergoing elective cardiac surgery: a prospective trial. Eur J Cardiothorac Surg 2008;34:354-9. https://doi.org/10.1016/j.ejcts.2008.04.047
  • 33. Cholette JM, Henrichs KF, Alfieris GM, et al. Washing red blood cells and platelets transfused in cardiac surgery reduces postoperative inflammation and number of transfusions: results of a prospective, randomized, controlled clinical trial. Pediatr Crit Care Med 2012;13:290-9. https://doi.org/10.1097/PCC.0b013e31822f173c
  • 34.Schouten ES, van de Pol AC, Schouten AN, et al. The effect of aprotinin, tranexamic acid, and aminocaproic acid on blood loss and use of blood products in major pediatric surgery: a meta-analysis. Pediatr Crit Care Med. 2009;10:182-90. https://doi.org/10.1097/PCC.0b013e3181956d61
  • 35. Shimizu K, Toda Y, Iwasaki T, et al. Effect of tranexamic acid on blood loss in pediatric cardiac surgery: A randomized trial. J Anesth. 2011;25:823-30. https://doi.org/10.1007/s00540-011-1235-z
  • 36.Patel PA, Wyrobek JA, MD, Butwick AJ, et al. Update on Applications and Limitations of Perioperative Tranexamic Acid. Anesth Analg. 2022;135:460-73. https://doi.org/10.1213/ANE.0000000000006039
  • 37.Guzzetta NA, Miller BE, Todd K, et al. An evaluation of the effects of a standard heparin dose on thrombin inhibition during cardiopulmonary bypass in neonates. Anesth Analg 2005;100:1276-82. https://doi.org/10.1213/01.ANE.0000149590.59294.3A
  • 38.Guzzetta NA, Monitz HG, Fernandez JD, et al. Correlations between activated clotting time values and heparin concentration measurements in young infants undergoing cardiopulmonary bypass. Anesth Analg. 2010;111:173-9. https://doi.org/10.1213/ANE.0b013e3181e13470
  • 39.Heying R, van Oeveren W, Wilhelm S, et al. Children undergoing cardiac surgery for complex cardiac defects show imbalance between pro- and anti-thrombotic activity. Crit Care 2006;10:R165. https://doi.org/10.1186/cc5108
  • 40.Guzzetta NA, Amin SJ, Tosone AK, et al. Change in heparin potency andneffects on the activated clotting time in children undergoing cardiopulmonary bypass. Anesth Analg 2012;115:921-4. https://doi.org/10.1213/ANE.0b013e318267056b
  • 41.D'Errico C, Shayevitz JR, Martindale SJ. Age-related differences in heparin sensitivity and heparin-protamine interactions in cardiac surgery patients. J Cardiothorac Vasc Anesth. 1996;10:451-7. https://doi.org/10.1016/S1053-0770(05)80003-5
  • 42.Koster A, Faraoni D, Levy JH. Argatroban and bivalirudin for perioperative anticoagulation in cardiac surgery. Anesthesiology 2018;128:390-400. https://doi.org/10.1097/ALN.0000000000001976
  • 43.Elliott M, Rao PV, Hampton M. Current paediatric perfusion practice in the UK. Perfusion. 1993;8:7-25. https://doi.org/10.1177/026765919300800103
  • 44.Nygaard K, Thiara AS, Tronstad C, et al. VAVD vacuum may cause bubble transgression in membrane oxygenators. Perfusion 2016 May 25; [E-pub ahead of print]. https://doi.org/10.1177/0267659116651345
  • 45.Richmond ME, Charette K, Chen JM, et al. The effect of cardiopulmonary bypass prime volume on the need for blood transfusion after pediatric cardiac surgery. J Thorac Cardiovasc Surg 2013;145:1058-64. https://doi.org/10.1016/j.jtcvs.2012.07.016
  • 46.Fukumura F, Kado H, Imoto Y, et al. Usefulness of low-priming-volume cardiopulmonary bypass circuits and dilutional ultrafiltration in neonatal open-heart surgery. J Artif Organs 2004;7:9-12. https://doi.org/10.1007/s10047-003-0241-9
  • 47.Durandy Y. Usefulness of low prime perfusion pediatric circuit in decreasing blood transfusion. ASAIO J 2007;53:659-61. https://doi.org/10.1097/MAT.0b013e31815b0cee
  • 48.Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126:1765-74. https://doi.org/10.1016/j.jtcvs.2003.04.003
  • 49.Newburger JW, Jonas RA, Soul J, et al. Randomized trial of hematocrit 25% versus 35% during hypothermic cardiopulmonary bypass in infant heart surgery. J Thorac Cardiovasc Surg. 2008;135:347-54, 354.e1. https://doi.org/10.1016/j.jtcvs.2007.01.051
  • 50.Groom RC, Froebe S,Martin J, et al. Update on pediatric perfusion practice in North America: 2005 survey. J Extracorp Technol 2005;37:343-50. https://doi.org/10.1051/ject/200537343
  • 51. Harvey B, Shann KG, Fitzgerald D, et al. International pediatric perfusion practice: 2011 survey results. J Extra Corpor Technol 2012;44:186-93. https://doi.org/10.1051/ject/201244186
  • 52. Russell JA, Navickis RJ, Wilkes MM. Albumin versus crystalloid for pump priming in cardiac surgery: Meta-analysis of controlled trials. J Cardiothorac Vasc Anesth 2004;18:429-37. https://doi.org/10.1053/j.jvca.2004.05.019
  • 53. Patel J, Prajapati M, Solanki A, et al. Comparison of albumin, hydroxyethyl starch and Ringer lactate solution as priming fluid for cardiopulmonary bypass in paediatric cardiac surgery. J Clin Diagn Res 2016;10;Uc01-04. https://doi.org/10.7860/JCDR/2016/18465.7918
  • 54. Miao N, Yang J, Du Z, et al. Comparison of low molecular weight hydroxyethyl starch and human albumin as priming solutions in children undergoing cardiac surgery. Perfusion 2014;29:462-8. https://doi.org/10.1177/0267659114528267
  • 55. Rizza A, Romagnoli S, Ricci Z. Fluid status assessment and management during the perioperative phase in pediatric cardiac surgery patients. J Cardiothorac Vasc Anesth 2016;30:1085-93. https://doi.org/10.1053/j.jvca.2015.11.007
  • 56. Jaggers J, Ungerleider RM. Cardiopulmonary bypass in infants and children. Critical heart disease in infants and children, ed 2. Philadelphia:Mosby; 2006, p. 507-28. https://doi.org/10.1016/B978-032301281-2.50022-9
  • 57. Manno CS, Hedberg KW, Kim HC, et al. Comparison of the hemostatic effects of fresh whole blood, stored whole blood, and components after open heart surgery in children. Blood. 1991;77:930-6. https://doi.org/10.1182/blood.V77.5.930.930
  • 58. Mou SS, Giroir BP, Molitor-Kirsch EA, et al. Fresh whole blood versus reconstituted blood for pump priming in heart surgery in infants. New Engl J Med 2004;351:1635-44. https://doi.org/10.1056/NEJMoa041065
  • 59. Lee JW, Yoo Y-C, Park HK, et al. Fresh frozen plasma in pump priming for congenital heart surgery: Evaluation of effects on postoperative coagulation profiles using a fibrinogen assay and rotational thromboelastometry. Yonsei Med J 2013;54:752-62. https://doi.org/10.3349/ymj.2013.54.3.752
  • 60. Jong WL, Young-Chul Y, Han Ki P, et al. Fresh frozen plasma in pump priming for congenital heart surgery: evaluation of effects on postoperative coagulation profiles using a fibrinogen assay and rotational thromboelastometry. Yonsei Med J. 2013;54:752-6. https://doi.org/10.3349/ymj.2013.54.3.752
  • 61. Bianchi P, Cotza M, Beccaris C, et al. Early or late fresh frozen plasma administration in newborns and small infants undergoing cardiac surgery: The APPEAR randomized trial. Br J Anaesth 2017;118:788-96. https://doi.org/10.1093/bja/aex069
  • 62. Oliver Jr WC, Beynen FM, Nuttall GA, et al. Blood loss in infants and children for open heart operations: Albumin 5% versus fresh-frozen plasma in the prime. Ann Thorac Surg 2003;75:1506-12. https://doi.org/10.1016/S0003-4975(02)04991-3
  • 63. Sebastian R, Ahmed MI. Blood conservation and hemostasis management in pediatric cardiac surgery. Front Cardiovasc Med. 2021;19:8:689623. https://doi.org/10.3389/fcvm.2021.689623
  • 64. Budak AB, McCusker K, Gunaydin S. A structured blood conservation program in pediatric cardiac surgery. Eur Rev Med Pharmacol Sci. 2017;21:1074-9.
  • 65. Draaisma AM, Hazekamp MG, Frank M, et al. Modified ultrafiltration after cardiopulmonary bypass in pediatric cardiac surgery. Ann Thorac Surg. 1997;64:521-5. https://doi.org/10.1016/S0003-4975(97)00522-5
  • 66. Kuranti N, Busangjaroen P, Srimueang T, et al. Modified versus conventional ultrafiltration in pediatric cardiac surgery: a meta-analysis of randomized controlled trials comparing clinical outcome parameters. J Thorac Cardiovasc Surg. 2011;142:861-7.
  • 67. Sosothikul D, Kittikalayawong Y, Aungbamnet P,et al. Reference values for thrombotic markers in children. Blood Coagul Fibrinolysis. 2012;23:208-11. https://doi.org/10.1097/MBC.0b013e328350294a
  • 68. Attard C, van der Straaten T, Karlaftis V, et al. Developmental hemostasis: age-specific differences in the levels of hemostatic proteins. J Thromb Haemost. 2013;11:1850-4. https://doi.org/10.1111/jth.12372
  • 69. Eaton MP, Iannoli EM. Coagulation considerations for infants and children undergoing cardiopulmonary bypass. Paediatr Anaesth. 2011;21:31-42. https://doi.org/10.1111/j.1460-9592.2010.03467.x
  • 70. Toulon P, Ozier Y, Ankri A, et al. Point-of-care versus central laboratory coagulation testing during haemorrhagic surgery. A multicenter study. Thromb Haemost 2009;101:394-401. https://doi.org/10.1160/TH08-06-0383
  • 71. Goel R, Cushing MM, Tobian AAR. Pediatric Patient Blood Management Programs: Not Just Transfusing Little Adults. Transfus Med Rev. 2016;30:235-41. https://doi.org/10.1016/j.tmrv.2016.07.004
  • 72. Karkouti K, Callum J, Wijeysundera DN, et al. TACS Investigators. Point-of-care hemostatic testing in cardiac surgery: a Stepped-Wedge Clustered Randomized Controlled Trial. Circulation. 2016;134:1152-62. https://doi.org/10.1161/CIRCULATIONAHA.116.023956
  • 73. Nakayama Y, Nakajima Y, Tanaka KA, et al. Thromboelastometry-guided intraoperative haemostatic management reduces bleeding and red cell transfusion after paediatric cardiac surgery. Br J Anaesth. 2015;114:91-102. https://doi.org/10.1093/bja/aeu339
  • 74. Bianchi P, Beccaris C, Norbert M et al. Use of Coagulation Point-of-Care Tests in the Management of Anticoagulation and Bleeding in Pediatric Cardiac Surgery: A Systematic Review. Anesth Analg. 2020;130:1594-604. https://doi.org/10.1213/ANE.0000000000004563
  • 75. Mazine A, Rached-D'Astous S, Ducruet T, et al. Blood transfusions after pediatric cardiac operations: A North American multicenter prospective study. Ann Thorac Surg 2015;100:671-7. https://doi.org/10.1016/j.athoracsur.2015.04.033
  • 76. Mulaj M, Faraoni D, Willems A, et al. Predictive factors for red blood cell transfusion in children undergoing noncomplex cardiac surgery. Ann Thorac Surg. 2014;98:662-7. https://doi.org/10.1016/j.athoracsur.2014.04.089
  • 77. Friesen RH, Tornabene MA, Coleman SP. Blood conservation during pediatric cardiac surgery: Ultrafiltration of the extracorporeal circuit volüme after cardiopulmonary bypass. Anesth Analg 1993;77:702-7. https://doi.org/10.1213/00000539-199310000-00008
  • 78. Salvin JW, Scheurer MA, Laussen PC, et al. Blood transfusion after pediatric cardiac surgery is associated with prolonged hospital stay. Ann Thorac Surg. 2011;91:204-10. https://doi.org/10.1016/j.athoracsur.2010.07.037
  • 79. Kneyber MC, Grotenhuis F, Berger RF, et al. Transfusion of leukocyte-depleted RBCs is independently associated with increased morbidity after pediatric cardiac surgery. Pediatr Crit Care Med. 2013;14:298-305. https://doi.org/10.1097/PCC.0b013e3182745472
  • 80. Lacroix J, Hebert PC, Hutchison JS, et al. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med. 2007;356:1609-19. https://doi.org/10.1056/NEJMoa066240
  • 81. Willems A, Harrington K, Lacroix J, et al. Comparison of two red-cell transfusion strategies after pediatric cardiac surgery: a subgroup analysis. Crit Care Med. 2010;38:649-56. https://doi.org/10.1097/CCM.0b013e3181bc816c
  • 82. Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126:1765-74. https://doi.org/10.1016/j.jtcvs.2003.04.003
  • 83. Du Pont-Thibodeau G, Harrington K, Lacroix J. Anemia and red blood cell transfusion in critically ill cardiac patients. Ann Intensive Care. 2014;4:16. https://doi.org/10.1186/2110-5820-4-16
  • 84. Faraoni D, Emani S, Halpin E, et al. Relationship between transfusion of blood products and the incidence of thrombotic complications in neonates and infants undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2017;31: 1943-8. https://doi.org/10.1053/j.jvca.2017.04.039
  • 85. Willems A, Harrington K, Lacroix J, et al. Comparison of two red-cell transfusion strategies after pediatric cardiac surgery: a subgroup analysis. Crit Care Med. 2010;38:649-56. https://doi.org/10.1097/CCM.0b013e3181bc816c
  • 86. Bonding Andreasen J, Hvas A-M, Ravn HB. Marked changes in platelet count and function following pediatric congenital heart surgery. Paediatr Anaesth 2014;24:386-92. https://doi.org/10.1111/pan.12347
  • 87. Romlin BS, Soderlund F, Wahlander H, et al. Platelet count and function in paediatric cardiac surgery: A prospective observational study. Br J Anaesth 2014;113:847-54. https://doi.org/10.1093/bja/aeu194
  • 88. Faraoni D, Willems A, Savan V, et al. Plasma fibrinogen concentration is correlated with postoperative blood loss in children undergoing cardiac surgery. A retrospective review. Eur J Anaesth 2014;31:317-26. https://doi.org/10.1097/EJA.0000000000000043

Patient Blood Management in Pediatric Cardiac Surgery

Year 2025, Volume: 8 Issue: 1, 12 - 18

Abstract

ABSTRACT
Children undergoing open heart surgery are often exposed to allogeneic blood products due to developmental changes in their haemostatic system and inflammation, use of anticoagulants, haemodilution and coagulopathy due to CPB. The complexity of surgical procedures, complex cardiopulmonary interactions and the risk of inadequate oxygen delivery and postoperative bleeding increase the use of blood products. Patient blood management aimed at minimising blood product transfusion is associated with improved patient outcomes. Safe conservative blood management practices covering the pre-, intra- and postoperative periods result in reduced blood product transfusion. This review summarises the current evidence on anaemia management and blood transfusion practices in the perioperative care of children undergoing cardiac surgery.

References

  • 1.Sebastian R, Ahmed MI. Blood Conservation and Hemostasis Management in Pediatric Cardiac Surgery. Front Cardiovasc Med. 2021;19:8:689623 https://doi.org/10.3389/fcvm.2021.689623
  • 2.Kipps AK, Wypij D, Thiagarajan RR, et al. Blood transfusion is associated with prolonged duration of mechanical ventilation in infants undergoing reparative cardiac surgery. Pediatr Crit Care Med. 2011;12:52-6. https://doi.org/10.1097/PCC.0b013e3181e30d43
  • 3.Iyengar A, Scipione CN, Sheth P, et al. Association of complications with blood transfusions in pediatric cardiac surgery patients. Ann Thorac Surg. 2013;96:910-6. https://doi.org/10.1016/j.athoracsur.2013.05.003
  • 4.Redlin M, Kukucka M, Boettcher W, et al. Blood transfusion determines postoperative morbidity in pediatric cardiac surgery applying a comprehensive blood-sparing approach. J Thorac Cardiovasc Surg. 2013;146:537-42. https://doi.org/10.1016/j.jtcvs.2012.09.101
  • 5.Clifford L, Jia Q, Yadav H et al. Characterizing the epidemiology of perioperative transfusion associated circulatory overload. Anesthesiology 2015;122:21-8. https://doi.org/10.1097/ALN.0000000000000513
  • 6.Toy P, Gajic O, Bacchettiet P al. Transfusion-related acute lung injury: incidence and risk factors. Blood. 2012;119:1757-67. https://doi.org/10.1182/blood-2011-08-370932
  • 7.Zou S, et al. Prevalence, incidence, and residual risk of human immunodeficiency virus and hepatitis C virus infections among United States blood donors since the introduction of nucleic acid testing. Transfusion 2010;50:1495-504. https://doi.org/10.1111/j.1537-2995.2010.02622.x
  • 8.Lavoie J. Blood transfusion risks and alternative strategies in pediatric patients. Paediatr Anaesth 2011;21:14-24. https://doi.org/10.1111/j.1460-9592.2010.03470.x
  • 9.Shander A, Bracey AW Jr, Goodnough LT, et al. Patient blood management as standard of care. Anesth Analg. 2016;123:1051-53. https://doi.org/10.1213/ANE.0000000000001496
  • 10.Goobie SM, Haas T. Perioperative bleeding management in pediatric surgery. Curr Opin Anaesthesiol. 2016;29:352-8. https://doi.org/10.1097/ACO.0000000000000308
  • 11.Gammon R, Al-Mozain N, Auron M. Transfusion therapy of neonatal and paediatric patients: They are not just little adults. Transfus Med. 2022;32:448-59. https://doi.org/10.1111/tme.12921
  • 12.Hassan N, Halanski M, Wincek J, et al. Blood management in pediatric spinal deformity surgery: review of a 2-year experience. Transfusion. 2011;51:2133-41. https://doi.org/10.1111/j.1537-2995.2011.03175.x
  • 13.Cholette JM, Faraoni D, Goobie SM. Patient Blood Management in Pediatric Cardiac Surgery: A Review. Anesth Analg. 2018;127:1002-16. https://doi.org/10.1213/ANE.0000000000002504
  • 14.Faraoni D, Meier J, New HV. Patient Blood Management for Neonates and Children Undergoing Cardiac Surgery: 2019 NATA Guidelines. J Cardiothorac Vasc Anesth. 2019;33:3249-63. https://doi.org/10.1053/j.jvca.2019.03.036
  • 15.Otsuka Y, Naraine N, Switzer T. Preoperative Iron Supplementation in Pediatric Cardiac Surgical Patients: A Preliminary Single-Center Experience. J Cardiothorac Vasc Anesth. 2022;36(6):1565-70. https://doi.org/10.1053/j.jvca.2021.12.022
  • 16.Goodnough LT, Shander A, Spivak JL, et al. Detection, evaluation, and management of anemia in the elective surgical patient. Anesth Analg 2005;101:1858-61. https://doi.org/10.1213/01.ANE.0000184124.29397.EB
  • 17.Gao P, Wang X, Zhang P, et al. Preoperative iron deficiency is associated with increased blood transfusion in infants undergoing cardiac surgery. 2022; 2:9:887535. https://doi.org/10.3389/fcvm.2022.887535
  • 18.Meyer HM, Torborg A, Cronje L, et al. The association between preoperative anemia and postoperative morbidity in pediatric surgical patients: A secondary analysis of a prospective observational cohort study. Paediatr Anaesth 2020;30:759-65. https://doi.org/10.1111/pan.13872
  • 19.Mulaj M, Faraoni D, Willems A, et al. Predictive factors for red blood cell transfusion in children undergoing noncomplex cardiac surgery. Ann Thorac Surg 2014;98:662-7. https://doi.org/10.1016/j.athoracsur.2014.04.089
  • 20.Boos V, Buhrer C, Berger F. Preoperative anemia and outcomes after corrective surgery in neonates with dextro-transposition of the great arteries. J Cardiothorac Vasc Anesth 2021;35:2900-6. https://doi.org/10.1053/j.jvca.2021.02.038
  • 21.Corwin HL, Shander A, Speiss B, et al. Management of perioperative iron deficiency in cardiac surgery: A modified RAND Delphi study. Ann Thorac Surg 2022;113:316-23. https://doi.org/10.1016/j.athoracsur.2020.11.031
  • 22.Yang SS, Al Kharusi L, Gosselin A, et al. Iron supplementation for patients undergoing cardiac surgery: A systematic review and meta-analysis of randomized controlled trials. Can J Anaesth 2022;69:129-39. https://doi.org/10.1007/s12630-021-02113-z
  • 23.Hassan N, Boville B, Reischmann D, et al. Intravenous ferumoxytol in pediatric patients with iron deficiency anemia: a single-center experience. Ann Pharmacother. 2017;51:548-54. https://doi.org/10.1177/1060028017699429
  • 24.Ootaki Y, Yamaguchi M, Yoshimura N. The efficacy of preoperative administration of a single dose of recombinant human erythropoietin in pediatric cardiac surgery. Heart Surg Forum. 2007;10:E115-9. https://doi.org/10.1532/HSF98.20061183
  • 25.Faraoni D, Meier J, New HV et al. Patient Blood Management for Neonates and Children Undergoing Cardiac Surgery: 2019 NATA Guidelines. 2019;33:3249-63. https://doi.org/10.1053/j.jvca.2019.03.036
  • 26.Van der Linden P. The physiology of acute isovolaemic anaemia. Acta Anaesthesiol Belg. 2002;53:97-103.
  • 27.Bhananker SM, Ramamoorthy C, Geiduschek JM et al. Anesthesia-related cardiac arrest in children: update from the Pediatric Perioperative Cardiac Arrest Registry. Anesth Analg. 2007;105:344-50 https://doi.org/10.1213/01.ane.0000268712.00756.dd
  • 28.Sebastian R, Ratliff T, Winch PD et al. Revisiting acute normovolemic hemodilution and blood transfusion during pediatric cardiac surgery: a prospective observational study. Paediatr Anaesth. 2017;27:85-90. https://doi.org/10.1111/pan.13014
  • 29.Harris WM, Treggiari MM, LeBlanc A et al. Randomized Pilot Trial of Acute Normovolemic Hemodilution in Pediatric Cardiac Surgery Patients. World J Pediatr Congenit Heart Surg. 2020;11:452-8. https://doi.org/10.1177/2150135120923627 30.Singh SP. Strategies for blood conservation in pediatric cardiac surgery. Ann Card Anaesth. 2016;19:705-16.https://doi.org/10.4103/0971-9784.191562
  • 31.Seyfried T, Breu A, Gruber M, et al. Processing of small volumes in blood salvage devices. Transfusion. 2014;54:2775-81. https://doi.org/10.1111/trf.12765
  • 32.Golab HD, Scohy TV, de Jong PL, et al. Intraoperative cell salvage in infants undergoing elective cardiac surgery: a prospective trial. Eur J Cardiothorac Surg 2008;34:354-9. https://doi.org/10.1016/j.ejcts.2008.04.047
  • 33. Cholette JM, Henrichs KF, Alfieris GM, et al. Washing red blood cells and platelets transfused in cardiac surgery reduces postoperative inflammation and number of transfusions: results of a prospective, randomized, controlled clinical trial. Pediatr Crit Care Med 2012;13:290-9. https://doi.org/10.1097/PCC.0b013e31822f173c
  • 34.Schouten ES, van de Pol AC, Schouten AN, et al. The effect of aprotinin, tranexamic acid, and aminocaproic acid on blood loss and use of blood products in major pediatric surgery: a meta-analysis. Pediatr Crit Care Med. 2009;10:182-90. https://doi.org/10.1097/PCC.0b013e3181956d61
  • 35. Shimizu K, Toda Y, Iwasaki T, et al. Effect of tranexamic acid on blood loss in pediatric cardiac surgery: A randomized trial. J Anesth. 2011;25:823-30. https://doi.org/10.1007/s00540-011-1235-z
  • 36.Patel PA, Wyrobek JA, MD, Butwick AJ, et al. Update on Applications and Limitations of Perioperative Tranexamic Acid. Anesth Analg. 2022;135:460-73. https://doi.org/10.1213/ANE.0000000000006039
  • 37.Guzzetta NA, Miller BE, Todd K, et al. An evaluation of the effects of a standard heparin dose on thrombin inhibition during cardiopulmonary bypass in neonates. Anesth Analg 2005;100:1276-82. https://doi.org/10.1213/01.ANE.0000149590.59294.3A
  • 38.Guzzetta NA, Monitz HG, Fernandez JD, et al. Correlations between activated clotting time values and heparin concentration measurements in young infants undergoing cardiopulmonary bypass. Anesth Analg. 2010;111:173-9. https://doi.org/10.1213/ANE.0b013e3181e13470
  • 39.Heying R, van Oeveren W, Wilhelm S, et al. Children undergoing cardiac surgery for complex cardiac defects show imbalance between pro- and anti-thrombotic activity. Crit Care 2006;10:R165. https://doi.org/10.1186/cc5108
  • 40.Guzzetta NA, Amin SJ, Tosone AK, et al. Change in heparin potency andneffects on the activated clotting time in children undergoing cardiopulmonary bypass. Anesth Analg 2012;115:921-4. https://doi.org/10.1213/ANE.0b013e318267056b
  • 41.D'Errico C, Shayevitz JR, Martindale SJ. Age-related differences in heparin sensitivity and heparin-protamine interactions in cardiac surgery patients. J Cardiothorac Vasc Anesth. 1996;10:451-7. https://doi.org/10.1016/S1053-0770(05)80003-5
  • 42.Koster A, Faraoni D, Levy JH. Argatroban and bivalirudin for perioperative anticoagulation in cardiac surgery. Anesthesiology 2018;128:390-400. https://doi.org/10.1097/ALN.0000000000001976
  • 43.Elliott M, Rao PV, Hampton M. Current paediatric perfusion practice in the UK. Perfusion. 1993;8:7-25. https://doi.org/10.1177/026765919300800103
  • 44.Nygaard K, Thiara AS, Tronstad C, et al. VAVD vacuum may cause bubble transgression in membrane oxygenators. Perfusion 2016 May 25; [E-pub ahead of print]. https://doi.org/10.1177/0267659116651345
  • 45.Richmond ME, Charette K, Chen JM, et al. The effect of cardiopulmonary bypass prime volume on the need for blood transfusion after pediatric cardiac surgery. J Thorac Cardiovasc Surg 2013;145:1058-64. https://doi.org/10.1016/j.jtcvs.2012.07.016
  • 46.Fukumura F, Kado H, Imoto Y, et al. Usefulness of low-priming-volume cardiopulmonary bypass circuits and dilutional ultrafiltration in neonatal open-heart surgery. J Artif Organs 2004;7:9-12. https://doi.org/10.1007/s10047-003-0241-9
  • 47.Durandy Y. Usefulness of low prime perfusion pediatric circuit in decreasing blood transfusion. ASAIO J 2007;53:659-61. https://doi.org/10.1097/MAT.0b013e31815b0cee
  • 48.Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126:1765-74. https://doi.org/10.1016/j.jtcvs.2003.04.003
  • 49.Newburger JW, Jonas RA, Soul J, et al. Randomized trial of hematocrit 25% versus 35% during hypothermic cardiopulmonary bypass in infant heart surgery. J Thorac Cardiovasc Surg. 2008;135:347-54, 354.e1. https://doi.org/10.1016/j.jtcvs.2007.01.051
  • 50.Groom RC, Froebe S,Martin J, et al. Update on pediatric perfusion practice in North America: 2005 survey. J Extracorp Technol 2005;37:343-50. https://doi.org/10.1051/ject/200537343
  • 51. Harvey B, Shann KG, Fitzgerald D, et al. International pediatric perfusion practice: 2011 survey results. J Extra Corpor Technol 2012;44:186-93. https://doi.org/10.1051/ject/201244186
  • 52. Russell JA, Navickis RJ, Wilkes MM. Albumin versus crystalloid for pump priming in cardiac surgery: Meta-analysis of controlled trials. J Cardiothorac Vasc Anesth 2004;18:429-37. https://doi.org/10.1053/j.jvca.2004.05.019
  • 53. Patel J, Prajapati M, Solanki A, et al. Comparison of albumin, hydroxyethyl starch and Ringer lactate solution as priming fluid for cardiopulmonary bypass in paediatric cardiac surgery. J Clin Diagn Res 2016;10;Uc01-04. https://doi.org/10.7860/JCDR/2016/18465.7918
  • 54. Miao N, Yang J, Du Z, et al. Comparison of low molecular weight hydroxyethyl starch and human albumin as priming solutions in children undergoing cardiac surgery. Perfusion 2014;29:462-8. https://doi.org/10.1177/0267659114528267
  • 55. Rizza A, Romagnoli S, Ricci Z. Fluid status assessment and management during the perioperative phase in pediatric cardiac surgery patients. J Cardiothorac Vasc Anesth 2016;30:1085-93. https://doi.org/10.1053/j.jvca.2015.11.007
  • 56. Jaggers J, Ungerleider RM. Cardiopulmonary bypass in infants and children. Critical heart disease in infants and children, ed 2. Philadelphia:Mosby; 2006, p. 507-28. https://doi.org/10.1016/B978-032301281-2.50022-9
  • 57. Manno CS, Hedberg KW, Kim HC, et al. Comparison of the hemostatic effects of fresh whole blood, stored whole blood, and components after open heart surgery in children. Blood. 1991;77:930-6. https://doi.org/10.1182/blood.V77.5.930.930
  • 58. Mou SS, Giroir BP, Molitor-Kirsch EA, et al. Fresh whole blood versus reconstituted blood for pump priming in heart surgery in infants. New Engl J Med 2004;351:1635-44. https://doi.org/10.1056/NEJMoa041065
  • 59. Lee JW, Yoo Y-C, Park HK, et al. Fresh frozen plasma in pump priming for congenital heart surgery: Evaluation of effects on postoperative coagulation profiles using a fibrinogen assay and rotational thromboelastometry. Yonsei Med J 2013;54:752-62. https://doi.org/10.3349/ymj.2013.54.3.752
  • 60. Jong WL, Young-Chul Y, Han Ki P, et al. Fresh frozen plasma in pump priming for congenital heart surgery: evaluation of effects on postoperative coagulation profiles using a fibrinogen assay and rotational thromboelastometry. Yonsei Med J. 2013;54:752-6. https://doi.org/10.3349/ymj.2013.54.3.752
  • 61. Bianchi P, Cotza M, Beccaris C, et al. Early or late fresh frozen plasma administration in newborns and small infants undergoing cardiac surgery: The APPEAR randomized trial. Br J Anaesth 2017;118:788-96. https://doi.org/10.1093/bja/aex069
  • 62. Oliver Jr WC, Beynen FM, Nuttall GA, et al. Blood loss in infants and children for open heart operations: Albumin 5% versus fresh-frozen plasma in the prime. Ann Thorac Surg 2003;75:1506-12. https://doi.org/10.1016/S0003-4975(02)04991-3
  • 63. Sebastian R, Ahmed MI. Blood conservation and hemostasis management in pediatric cardiac surgery. Front Cardiovasc Med. 2021;19:8:689623. https://doi.org/10.3389/fcvm.2021.689623
  • 64. Budak AB, McCusker K, Gunaydin S. A structured blood conservation program in pediatric cardiac surgery. Eur Rev Med Pharmacol Sci. 2017;21:1074-9.
  • 65. Draaisma AM, Hazekamp MG, Frank M, et al. Modified ultrafiltration after cardiopulmonary bypass in pediatric cardiac surgery. Ann Thorac Surg. 1997;64:521-5. https://doi.org/10.1016/S0003-4975(97)00522-5
  • 66. Kuranti N, Busangjaroen P, Srimueang T, et al. Modified versus conventional ultrafiltration in pediatric cardiac surgery: a meta-analysis of randomized controlled trials comparing clinical outcome parameters. J Thorac Cardiovasc Surg. 2011;142:861-7.
  • 67. Sosothikul D, Kittikalayawong Y, Aungbamnet P,et al. Reference values for thrombotic markers in children. Blood Coagul Fibrinolysis. 2012;23:208-11. https://doi.org/10.1097/MBC.0b013e328350294a
  • 68. Attard C, van der Straaten T, Karlaftis V, et al. Developmental hemostasis: age-specific differences in the levels of hemostatic proteins. J Thromb Haemost. 2013;11:1850-4. https://doi.org/10.1111/jth.12372
  • 69. Eaton MP, Iannoli EM. Coagulation considerations for infants and children undergoing cardiopulmonary bypass. Paediatr Anaesth. 2011;21:31-42. https://doi.org/10.1111/j.1460-9592.2010.03467.x
  • 70. Toulon P, Ozier Y, Ankri A, et al. Point-of-care versus central laboratory coagulation testing during haemorrhagic surgery. A multicenter study. Thromb Haemost 2009;101:394-401. https://doi.org/10.1160/TH08-06-0383
  • 71. Goel R, Cushing MM, Tobian AAR. Pediatric Patient Blood Management Programs: Not Just Transfusing Little Adults. Transfus Med Rev. 2016;30:235-41. https://doi.org/10.1016/j.tmrv.2016.07.004
  • 72. Karkouti K, Callum J, Wijeysundera DN, et al. TACS Investigators. Point-of-care hemostatic testing in cardiac surgery: a Stepped-Wedge Clustered Randomized Controlled Trial. Circulation. 2016;134:1152-62. https://doi.org/10.1161/CIRCULATIONAHA.116.023956
  • 73. Nakayama Y, Nakajima Y, Tanaka KA, et al. Thromboelastometry-guided intraoperative haemostatic management reduces bleeding and red cell transfusion after paediatric cardiac surgery. Br J Anaesth. 2015;114:91-102. https://doi.org/10.1093/bja/aeu339
  • 74. Bianchi P, Beccaris C, Norbert M et al. Use of Coagulation Point-of-Care Tests in the Management of Anticoagulation and Bleeding in Pediatric Cardiac Surgery: A Systematic Review. Anesth Analg. 2020;130:1594-604. https://doi.org/10.1213/ANE.0000000000004563
  • 75. Mazine A, Rached-D'Astous S, Ducruet T, et al. Blood transfusions after pediatric cardiac operations: A North American multicenter prospective study. Ann Thorac Surg 2015;100:671-7. https://doi.org/10.1016/j.athoracsur.2015.04.033
  • 76. Mulaj M, Faraoni D, Willems A, et al. Predictive factors for red blood cell transfusion in children undergoing noncomplex cardiac surgery. Ann Thorac Surg. 2014;98:662-7. https://doi.org/10.1016/j.athoracsur.2014.04.089
  • 77. Friesen RH, Tornabene MA, Coleman SP. Blood conservation during pediatric cardiac surgery: Ultrafiltration of the extracorporeal circuit volüme after cardiopulmonary bypass. Anesth Analg 1993;77:702-7. https://doi.org/10.1213/00000539-199310000-00008
  • 78. Salvin JW, Scheurer MA, Laussen PC, et al. Blood transfusion after pediatric cardiac surgery is associated with prolonged hospital stay. Ann Thorac Surg. 2011;91:204-10. https://doi.org/10.1016/j.athoracsur.2010.07.037
  • 79. Kneyber MC, Grotenhuis F, Berger RF, et al. Transfusion of leukocyte-depleted RBCs is independently associated with increased morbidity after pediatric cardiac surgery. Pediatr Crit Care Med. 2013;14:298-305. https://doi.org/10.1097/PCC.0b013e3182745472
  • 80. Lacroix J, Hebert PC, Hutchison JS, et al. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med. 2007;356:1609-19. https://doi.org/10.1056/NEJMoa066240
  • 81. Willems A, Harrington K, Lacroix J, et al. Comparison of two red-cell transfusion strategies after pediatric cardiac surgery: a subgroup analysis. Crit Care Med. 2010;38:649-56. https://doi.org/10.1097/CCM.0b013e3181bc816c
  • 82. Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126:1765-74. https://doi.org/10.1016/j.jtcvs.2003.04.003
  • 83. Du Pont-Thibodeau G, Harrington K, Lacroix J. Anemia and red blood cell transfusion in critically ill cardiac patients. Ann Intensive Care. 2014;4:16. https://doi.org/10.1186/2110-5820-4-16
  • 84. Faraoni D, Emani S, Halpin E, et al. Relationship between transfusion of blood products and the incidence of thrombotic complications in neonates and infants undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2017;31: 1943-8. https://doi.org/10.1053/j.jvca.2017.04.039
  • 85. Willems A, Harrington K, Lacroix J, et al. Comparison of two red-cell transfusion strategies after pediatric cardiac surgery: a subgroup analysis. Crit Care Med. 2010;38:649-56. https://doi.org/10.1097/CCM.0b013e3181bc816c
  • 86. Bonding Andreasen J, Hvas A-M, Ravn HB. Marked changes in platelet count and function following pediatric congenital heart surgery. Paediatr Anaesth 2014;24:386-92. https://doi.org/10.1111/pan.12347
  • 87. Romlin BS, Soderlund F, Wahlander H, et al. Platelet count and function in paediatric cardiac surgery: A prospective observational study. Br J Anaesth 2014;113:847-54. https://doi.org/10.1093/bja/aeu194
  • 88. Faraoni D, Willems A, Savan V, et al. Plasma fibrinogen concentration is correlated with postoperative blood loss in children undergoing cardiac surgery. A retrospective review. Eur J Anaesth 2014;31:317-26. https://doi.org/10.1097/EJA.0000000000000043
There are 87 citations in total.

Details

Primary Language English
Subjects Anaesthesiology
Journal Section Reviews
Authors

Feride Karacaer 0000-0002-1048-6505

Publication Date
Submission Date November 26, 2024
Acceptance Date January 27, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Karacaer, F. (n.d.). Patient Blood Management in Pediatric Cardiac Surgery. Journal of Cukurova Anesthesia and Surgical Sciences, 8(1), 12-18.

download

You are free to:
Share — copy and redistribute the material in any medium or format The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes. NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.