Clinical Research
BibTex RIS Cite

Effects of Arterial Oxygen Pressure Values During Cardiopulmonary Bypass on Postoperative Outcomes in Pediatric Patients

Year 2025, Volume: 8 Issue: 3, 214 - 221, 30.09.2025

Abstract

Objective: To investigate the effects of supraphysiological arterial oxygen pressure (PaO2) levels during cardiopulmonary bypass (CPB) on clinical outcomes in children undergoing open heart surgery.
Methods: Intraoperative and postoperative data of patients aged 16 years and younger undergoing open heart surgery were retrospectively reviewed. Patients were divided into three groups according to maximum PaO2 values determined by blood gas analysis during CPB. Group I was defined as maximum PaO2 = 100-199 mmHg during CPB; group II, PaO2 = 200-299 mmHg; and group III, PaO2 ≥ 300 mmHg.
Results: The maximum PaO2 values achieved during CPB increased with increasing duration of CPB and cross-clamp duration (p=0.001, p=0.028). In the postoperative period, no significant difference was found between the groups in terms of maximum PaO2 levels achieved during CPB, duration of mechanical ventilation, hospital and intensive care unit (ICU) stay and complications (p = 0.307). There was no difference between systemic inflammatory response syndrome and PaO2 levels assessed at 6, 24 and 48 hours postoperatively in the ICU (p = 0.706, p = 0.926, p = 0.876). An increase in the maximum PaO2 achieved during CPB was associated with an increase in mortality (p = 0.039). When analysing the subgroup of cyanotic patients, ICU length of stay ≤ 10 days was associated with high oxygen levels (p = 0.028).
Conclusion: The results of our study indicate that supraphysiological oxygen levels used during CPB cause an increase in mortality.

References

  • 1.de Hert S, Moerman A. Myocardial injury and protection related to cardiopulmonary bypass. Best Pract Res Clin Anaesthesiol. 2015;29:137-49. [Crossref]
  • 2.Koning NJ, Simon LE, Asfar P, et al. Systemic microvascular shunting through hyperdynamic capillaries after acute physiological disturbances following cardiopulmonary bypass. Am J Physiol Heart Circ Physiol. 2014;307:967-75. [Crossref]
  • 3.Martin DS, Grocott MPW. Oxygen therapy and anaesthesia: too much of a good thing? Anaesthesia. 2015;70:522-7. [Crossref]
  • 4.Helmerhorst HJF, Roos-Blom MJ, van Westerloo DJ, et al. Association between arterial hyperoxia and outcome in subsets of critical illness: A systematic review, meta-analysis, and meta-regression of cohort studies. Critical Care Med. 2015;43:1508-19. [Crossref]
  • 5.Inoue T, Ku K, Kaneda T, et al. Cardioprotective Effects of Lowering Oxygen Tension After Aortic Unclamping on Cardiopulmonary Bypass During Coronary Artery Bypass Grafting. Circulation. 2002;66:718-22. [Crossref]
  • 6.Kunst G, Klein AA. Peri-operative anaesthetic myocardial preconditioning and protection - Cellular mechanisms and clinical relevance in cardiac anaesthesia. Anaesthesia. 2015;70:467-82. [Crossref]
  • 7.Tähepôld P, Valen G, Starkopf J, et al. Pretreating Rats with Hyperoxia Attenuates Ischemia-Reperfusion Injury of the Heart. Life Sci. 2001;68:1629-40. [Crossref]
  • 8.Jenkins KJ, Gauvreau K, Newburger JW, et al. Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg. 2002;123:110–8. [Crossref]
  • 9.Gaies MG, Gurney JG, Yen AH, et al. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med 2010;11:234–8. [Crossref]
  • 10.Goldstein B, Giroir B, Randolph A; International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005;6:2–8. [Crossref]
  • 11.Spoelstra-de Man AME, Smit B, Oudemans-van Straaten HM, et al. Cardiovascular effects of hyperoxia during and after cardiac surgery. Anaesthesia. 2015;70:1307-19. [Crossref]
  • 12.Bae J, Kim J, Lee S, et al. Association Between Intraoperative Hyperoxia and Acute Kidney Injury After Cardiac Surgery: A Retrospective Observational Study. J Cardiothorac Vasc Anesth. 2021;35:2405-14. Published online 2020. [Crossref]
  • 13.Morkane CM, McKenna H, Cumpstey AF, et al. Intraoperative oxygenation in adult patients undergoing surgery (iOPS): a retrospective observational study across 29 UK hospitals. Perioper Med. 2018;7:17. [Crossref] 14.Farquhar H, Weatherall M, Wijesinghe M, et al. Systematic review of studies of the effect of hyperoxia on coronary blood flow. Am Heart J. 2009;158:371-7. [Crossref]
  • 15.Palmer E, Post B, Klapaukh R, et al. The association between supraphysiologic arterial oxygen levels and mortality in critically ill patients a multicenter observational cohort study. American Journal of Respiratory and Critical Care Med. 2019;200:1373-80. [Crossref]
  • 16.Xu C, Jiang D wei, Qiu W yong, et al. Arterial oxygen pressure targets in critically ill patients: Analysis of a large ICU database. Heart Lung. 2021;50:220-5. [Crossref]
  • 17.Li S, Krawczeski CD, Zappitelli M, et al. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: A prospective multicenter study. Critical Care Med. 2011;39:1493-9. [Crossref] 18.Reinhart K, Bloos F, Konig F, Bredle D, Hannemann L. Reversible decrease of oxygen consumption by hyperoxia. Chest. 1991;99:690-4. [Crossref]
  • 19.Tähepõld P, Vaage J, Starkopf J, et al. Hyperoxia elicits myocardial protection through a nuclear factor κB-dependent mechanism in the rat heart. J Thorac Cardiovasc Surg. 2003;125:650-60. [Crossref]
  • 20.Tähepõld P, Ruusalepp A, Li G, et al. Cardioprotection by breathing hyperoxic gas - Relation to oxygen concentration and exposure time in rats and mice. Eur J Cardiothorac Surg. 2002;21:987-94. [Crossref]
  • 21.Oldman AH, Martin DS, Feelisch M, et al. Effects of perioperative oxygen concentration on oxidative stress in adult surgical patients: a systematic review. Br J Anaesth. Published online 2020. 2021;126:622-32. [Crossref]
  • 22.Bulutcu FS, Bayindir O, Polat B, et al. Does normoxemic cardiopulmonary bypass prevent myocardial reoxygenation injury in cyanotic children? J Cardiothorac Vasc Anesth. 2002;16:330-3. [Crossref]
  • 23.Fujii Y, Shirai M, Tsuchimochi H, et al. Hyperoxic Condition Promotes an Inflammatory Response During Cardiopulmonary Bypass in a Rat Model. Artificial Organs. 2013;37:1034-40. [Crossref]
  • 24.Pirinccioglu AG, Alyan Ö, Kizil G, et al. Evaluation of oxidative stress in children with congenital heart defects. Pediatr Int. 2012;54:94-8. [Crossref]
  • 25.Ercan S, Çakmak A, Kösecik M, et al. The oxidative state of children with cyanotic and acyanotic congenital heart disease. Anadolu Kardiyol Derg. 2009;9(6):486-90.
  • 26.Allen BS, Rahman S, Ilbawi MN, et al. Detrimental effects of cardiopulmonary bypass in cyanotic infants: Preventing the reoxygenation injury. Ann Thorac Surg. 1997;64:1381-88. [Crossref]
  • 27.Morita K, Ihnken K, Buckberg GD, et al. Studies of hypoxemic/reoxygenation injury: Without aortic clamping. IX. Importance of avoiding perioperative hyperoxemia in the setting of previous cyanosis. J Thorac Cardiovasc Surg. 1995;110:1235-44. [Crossref]
  • 28.Morita K, Ihnken K, Buckberg GD. Studies of hypoxemic/reoxygenation injury: With aortic clamping. XII. Delay of cardiac reoxygenation damage in the presence of cyanosis: A new concept of controlled cardiac reoxygenation. J Thorac Cardiovasc Surg. 1995;110:1265-73. [Crossref]
  • 29.Caputo M, Mokhtari A, Miceli A, et al. Controlled reoxygenation during cardiopulmonary bypass decreases markers of organ damage, inflammation, and oxidative stress in single ventricle patients undergoing pediatric heart surgery. J Thorac Cardiovasc Surg. 2014;148:792-801. [Crossref]
  • 30.Caputo M, Mokhtari A, Rogers CA, et al. The effects of normoxic versus hyperoxic cardiopulmonary bypass on oxidative stress and inflammatory response in cyanotic pediatric patients undergoing open cardiac surgery: A randomized controlled trial. J Thorac Cardiovasc Surg. 2009;138:206-14. [Crossref]
  • 31.Modi P, Imura H, Caputo M, et al. Cardiopulmonary bypass-induced myocardial reoxygenation injury in pediatric patients with cyanosis. J Thorac Cardiovasc Surg. 2002;124:1035-6. [Crossref]
  • 32.Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: Results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126:1765-74. [Crossref]
  • 33.Willems A, Harrington K, Lacroix J, et al. Comparison of two red-cell transfusion strategies after pediatric cardiac surgery: A subgroup analysis. Critical Care Med. 2010;38:649-56. [Crossref]
  • 34.Budak AB, McCusker K, Gunaydin S. A structured blood conservation program in pediatric cardiac surgery. Eur Rev Med Pharmacol Sci. 2017;21:1074-9.
  • 35.Durham AL, al Jaaly E, Graham R, et al. Multi-omic analysis of the effects of low frequency ventilation during cardiopulmonary bypass surgery. Int J Cardiol. 2020;309:40-7. [Crossref]
  • 36.Reber A, Budmiger B, Wenk M, et al. Inspired oxygen fraction after cardiopulmonary bypass: Effects on pulmonary function with regard to endothelin-1 concentrations and venous admixture. Br J Anaesth. 2000;84:565-70. [Crossref] 37.WHO | Global guidelines on the prevention of surgical site infection. WHO. Published online 2017. Accessed January 30, 2021. http://www.who.int/gpsc/ssi-guidelines/en/ 38.Mendes M. Admission Hyperoxia Is a Risk Factor for Mortality in Pediatric Intensive Care. Pediatr Crit Care Med. 2018;55:868-9. [Crossref]

Pediyatrik Hastalarda Kardiyopulmoner Bypass Sırasındaki Arteriyel Oksijen Basıncı Değerlerinin Postoperatif Sonuçlar Üzerine Etkileri

Year 2025, Volume: 8 Issue: 3, 214 - 221, 30.09.2025

Abstract

Amaç: Açık kalp cerrahisi geçiren çocuklarda kardiyopulmoner bypass (KPB) sırasında uygulanan supra-fizyolojik arteriyel oksijen basıncı (PaO2) değerlerinin klinik sonuçlar üzerindeki etkileri araştırılmıştır.
Metod: Açık kalp cerrahisi geçirmiş 16 yaş ve altındaki hastaların intraoperatif ve postoperatif verileri retrospektif olarak tarandı. Hastalar, KPB sırasında kan gazı analizi ile saptanmış maksimum PaO2 değerlerine göre üç grupta toplandı. Grup I, KPB süresince ulaşılan maksimum PaO2 = 100-199mmHg; grup II, PaO2 = 200-299 mmHg ve grup III, PaO2 ≥ 300 mmHg olarak belirlendi.
Bulgular: KPB süresi ve kros klemp süresi uzadıkça, KPB sırasında ulaşılan maksimum PaO2 düzeylerinin arttığı saptandı (p=0.001, p=0.028). Postoperatif dönemde; KPB süresince ulaşılan maksimum PaO2 düzeyleri ile mekanik ventilasyon süresi, hastanede ve yoğun bakım ünitesinde (YBÜ) yatış süreleri ve komplikasyonlar açısından gruplar arasında anlamlı bir fark saptanmadı (p = 0.307). YBÜ’nde postoperatif 6., 24. ve 48. saatlerde değerlendirilen sistemik inflamatuar yanıt sendromu ve PaO2 düzeyleri arasında fark yoktu (p = 0.706, p = 0.926, p = 0.876). KPB süresince ulaşılan maksimum PaO2 düzeyindeki artış mortalitede artış ile birlikteydi (p = 0.039). Siyanotik hastalardan oluşan alt grup incelendiğinde; 10 gün ≤ YBÜ yatış sürelerinin yüksek oksijen düzeyleri ile ilgili olduğu belirlendi (p = 0.028).
Sonuç: Çalışmamızın sonuçları KPB süresince uygulanan suprafizyolojik oksijen düzeylerinin mortalitede artışa sebep olduğunu göstermektedir.

References

  • 1.de Hert S, Moerman A. Myocardial injury and protection related to cardiopulmonary bypass. Best Pract Res Clin Anaesthesiol. 2015;29:137-49. [Crossref]
  • 2.Koning NJ, Simon LE, Asfar P, et al. Systemic microvascular shunting through hyperdynamic capillaries after acute physiological disturbances following cardiopulmonary bypass. Am J Physiol Heart Circ Physiol. 2014;307:967-75. [Crossref]
  • 3.Martin DS, Grocott MPW. Oxygen therapy and anaesthesia: too much of a good thing? Anaesthesia. 2015;70:522-7. [Crossref]
  • 4.Helmerhorst HJF, Roos-Blom MJ, van Westerloo DJ, et al. Association between arterial hyperoxia and outcome in subsets of critical illness: A systematic review, meta-analysis, and meta-regression of cohort studies. Critical Care Med. 2015;43:1508-19. [Crossref]
  • 5.Inoue T, Ku K, Kaneda T, et al. Cardioprotective Effects of Lowering Oxygen Tension After Aortic Unclamping on Cardiopulmonary Bypass During Coronary Artery Bypass Grafting. Circulation. 2002;66:718-22. [Crossref]
  • 6.Kunst G, Klein AA. Peri-operative anaesthetic myocardial preconditioning and protection - Cellular mechanisms and clinical relevance in cardiac anaesthesia. Anaesthesia. 2015;70:467-82. [Crossref]
  • 7.Tähepôld P, Valen G, Starkopf J, et al. Pretreating Rats with Hyperoxia Attenuates Ischemia-Reperfusion Injury of the Heart. Life Sci. 2001;68:1629-40. [Crossref]
  • 8.Jenkins KJ, Gauvreau K, Newburger JW, et al. Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg. 2002;123:110–8. [Crossref]
  • 9.Gaies MG, Gurney JG, Yen AH, et al. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med 2010;11:234–8. [Crossref]
  • 10.Goldstein B, Giroir B, Randolph A; International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005;6:2–8. [Crossref]
  • 11.Spoelstra-de Man AME, Smit B, Oudemans-van Straaten HM, et al. Cardiovascular effects of hyperoxia during and after cardiac surgery. Anaesthesia. 2015;70:1307-19. [Crossref]
  • 12.Bae J, Kim J, Lee S, et al. Association Between Intraoperative Hyperoxia and Acute Kidney Injury After Cardiac Surgery: A Retrospective Observational Study. J Cardiothorac Vasc Anesth. 2021;35:2405-14. Published online 2020. [Crossref]
  • 13.Morkane CM, McKenna H, Cumpstey AF, et al. Intraoperative oxygenation in adult patients undergoing surgery (iOPS): a retrospective observational study across 29 UK hospitals. Perioper Med. 2018;7:17. [Crossref] 14.Farquhar H, Weatherall M, Wijesinghe M, et al. Systematic review of studies of the effect of hyperoxia on coronary blood flow. Am Heart J. 2009;158:371-7. [Crossref]
  • 15.Palmer E, Post B, Klapaukh R, et al. The association between supraphysiologic arterial oxygen levels and mortality in critically ill patients a multicenter observational cohort study. American Journal of Respiratory and Critical Care Med. 2019;200:1373-80. [Crossref]
  • 16.Xu C, Jiang D wei, Qiu W yong, et al. Arterial oxygen pressure targets in critically ill patients: Analysis of a large ICU database. Heart Lung. 2021;50:220-5. [Crossref]
  • 17.Li S, Krawczeski CD, Zappitelli M, et al. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: A prospective multicenter study. Critical Care Med. 2011;39:1493-9. [Crossref] 18.Reinhart K, Bloos F, Konig F, Bredle D, Hannemann L. Reversible decrease of oxygen consumption by hyperoxia. Chest. 1991;99:690-4. [Crossref]
  • 19.Tähepõld P, Vaage J, Starkopf J, et al. Hyperoxia elicits myocardial protection through a nuclear factor κB-dependent mechanism in the rat heart. J Thorac Cardiovasc Surg. 2003;125:650-60. [Crossref]
  • 20.Tähepõld P, Ruusalepp A, Li G, et al. Cardioprotection by breathing hyperoxic gas - Relation to oxygen concentration and exposure time in rats and mice. Eur J Cardiothorac Surg. 2002;21:987-94. [Crossref]
  • 21.Oldman AH, Martin DS, Feelisch M, et al. Effects of perioperative oxygen concentration on oxidative stress in adult surgical patients: a systematic review. Br J Anaesth. Published online 2020. 2021;126:622-32. [Crossref]
  • 22.Bulutcu FS, Bayindir O, Polat B, et al. Does normoxemic cardiopulmonary bypass prevent myocardial reoxygenation injury in cyanotic children? J Cardiothorac Vasc Anesth. 2002;16:330-3. [Crossref]
  • 23.Fujii Y, Shirai M, Tsuchimochi H, et al. Hyperoxic Condition Promotes an Inflammatory Response During Cardiopulmonary Bypass in a Rat Model. Artificial Organs. 2013;37:1034-40. [Crossref]
  • 24.Pirinccioglu AG, Alyan Ö, Kizil G, et al. Evaluation of oxidative stress in children with congenital heart defects. Pediatr Int. 2012;54:94-8. [Crossref]
  • 25.Ercan S, Çakmak A, Kösecik M, et al. The oxidative state of children with cyanotic and acyanotic congenital heart disease. Anadolu Kardiyol Derg. 2009;9(6):486-90.
  • 26.Allen BS, Rahman S, Ilbawi MN, et al. Detrimental effects of cardiopulmonary bypass in cyanotic infants: Preventing the reoxygenation injury. Ann Thorac Surg. 1997;64:1381-88. [Crossref]
  • 27.Morita K, Ihnken K, Buckberg GD, et al. Studies of hypoxemic/reoxygenation injury: Without aortic clamping. IX. Importance of avoiding perioperative hyperoxemia in the setting of previous cyanosis. J Thorac Cardiovasc Surg. 1995;110:1235-44. [Crossref]
  • 28.Morita K, Ihnken K, Buckberg GD. Studies of hypoxemic/reoxygenation injury: With aortic clamping. XII. Delay of cardiac reoxygenation damage in the presence of cyanosis: A new concept of controlled cardiac reoxygenation. J Thorac Cardiovasc Surg. 1995;110:1265-73. [Crossref]
  • 29.Caputo M, Mokhtari A, Miceli A, et al. Controlled reoxygenation during cardiopulmonary bypass decreases markers of organ damage, inflammation, and oxidative stress in single ventricle patients undergoing pediatric heart surgery. J Thorac Cardiovasc Surg. 2014;148:792-801. [Crossref]
  • 30.Caputo M, Mokhtari A, Rogers CA, et al. The effects of normoxic versus hyperoxic cardiopulmonary bypass on oxidative stress and inflammatory response in cyanotic pediatric patients undergoing open cardiac surgery: A randomized controlled trial. J Thorac Cardiovasc Surg. 2009;138:206-14. [Crossref]
  • 31.Modi P, Imura H, Caputo M, et al. Cardiopulmonary bypass-induced myocardial reoxygenation injury in pediatric patients with cyanosis. J Thorac Cardiovasc Surg. 2002;124:1035-6. [Crossref]
  • 32.Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: Results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126:1765-74. [Crossref]
  • 33.Willems A, Harrington K, Lacroix J, et al. Comparison of two red-cell transfusion strategies after pediatric cardiac surgery: A subgroup analysis. Critical Care Med. 2010;38:649-56. [Crossref]
  • 34.Budak AB, McCusker K, Gunaydin S. A structured blood conservation program in pediatric cardiac surgery. Eur Rev Med Pharmacol Sci. 2017;21:1074-9.
  • 35.Durham AL, al Jaaly E, Graham R, et al. Multi-omic analysis of the effects of low frequency ventilation during cardiopulmonary bypass surgery. Int J Cardiol. 2020;309:40-7. [Crossref]
  • 36.Reber A, Budmiger B, Wenk M, et al. Inspired oxygen fraction after cardiopulmonary bypass: Effects on pulmonary function with regard to endothelin-1 concentrations and venous admixture. Br J Anaesth. 2000;84:565-70. [Crossref] 37.WHO | Global guidelines on the prevention of surgical site infection. WHO. Published online 2017. Accessed January 30, 2021. http://www.who.int/gpsc/ssi-guidelines/en/ 38.Mendes M. Admission Hyperoxia Is a Risk Factor for Mortality in Pediatric Intensive Care. Pediatr Crit Care Med. 2018;55:868-9. [Crossref]
There are 34 citations in total.

Details

Primary Language English
Subjects Anaesthesiology
Journal Section Articles
Authors

Gülşah Karakuş 0009-0005-8034-7956

Feride Karacaer 0000-0002-1048-6505

Publication Date September 30, 2025
Submission Date December 21, 2024
Acceptance Date September 1, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Karakuş, G., & Karacaer, F. (2025). Effects of Arterial Oxygen Pressure Values During Cardiopulmonary Bypass on Postoperative Outcomes in Pediatric Patients. Journal of Cukurova Anesthesia and Surgical Sciences, 8(3), 214-221.

download

You are free to:
Share — copy and redistribute the material in any medium or format The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes. NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.