Face-palm print recognition system based on 2d circular wavelet Filter and contourlet transformation
Year 2023,
Volume: 2 Issue: 2, 247 - 252, 27.12.2023
Zahraa Talal
,
Ahmed M. Alkababji
Abstract
The study proposes a multimodal biometric design that combines face and palm print recognition modules. To extract the features from the face data set, we proposed a novel 2-D circular wavelet filter that depends on HAAR filters and used the contourlet transformation in palm print data sets. The multimodal biometric design merges the features extracted from different types of unimodal system UBS by using a fusion level. Our proposed approach wants to decrease the time required to recognize a person depending on 2-D CDWT and enhance the accuracy of recognition by using the 2-D CDWT and contourlet transformations as pre-processing level in our approach, then the CNN model is applied to train and test our approach. Our data set was taken from 110 persons which means 1100 pairs of images in 10 sessions. This approach’s results look good and progressed over other most recent architectures by recording a precision of 99.3%, with a score-level fusion.
Supporting Institution
no supporting institution
References
- Agrawal, P., Zabrovskiy, A., Ilangovan, A., Timmerer, C., & Prodan, R. (2021). FastTTPS: fast
approach for video transcoding time prediction and scheduling for HTTP adaptive streaming videos.
Cluster Computing,24(3),1605–1621.doi:https://doi.org/10.1007/s10586-020-03207-x
- Bai, Y., Haghighat, M., & Abdel-Mottaleb, M. (2018). Kernel Discriminant Correlation Analysis:
Feature Level Fusion for Nonlinear Biometric Recognition. P2018 24th International Conference
on Pattern Recognition(ICPR),3198–3203. doi:https://doi.org/10.1109/ICPR.2018.8546068
- Bc, A., & Prakash, H. N. (2022). Image fusion by discrete wavelet transform for multimodal
biometric recognition. IAES International Journal of Artificial Intelligence (IJ-AI), 11(1), 229–237.
doi:https://doi.org/10.11591/ijai.v11.i1.pp229-237
- Hardalac, F., Yaşar, H., Akyel, A., & Kutbay, U. (2020). A novel comparative study using multi-
Talal Abed, Alkababji Journal of Optimization & Decision Making 2(2), 247-252, 2023
252
resolution transforms and convolutional neural network (CNN) for contactless palm print
verification and identification. Multimedia Tools and Applications, 79(31–32), 22929–22963.
doi:https://doi.org/10.1007/s11042-020-09005-2
- Kortli, Y., Jridi, M., Al Falou, A., & Atri, M. (2020). Face recognition systems: A survey. Sensors
(Switzerland), 20(2). https://doi.org/10.3390/s20020342
- Leghari, M., Memon, S., & Chandio, A. A. (2018). Feature-Level Fusion of Fingerprint and Online
Signature for Multimodal Biometrics. 2018 International Conference on Computing, Mathematics
and Engineering Technologies (ICoMET), 2–5. doi:https://doi.org/10.1109/ICOMET.2018.8346358
- Mansoura, L., Noureddine, A., Assas, O., & Yassine, A. (2019). Multimodal Face and Iris
Recognition with Adaptive Score Normalization using Several Comparative Methods. Indian
Journal of Science and Technology, 12(7),1–8. doi:https://doi.org/10.17485/ijst/2019/v12i7/140755
- Nada Alay, H. H. A.-B. (2020). Deep Learning Approach for Multimodal Biometric Recognition
System Based on Fusion of Iris, Face, and Finger Vein Traits. Sensors, 20(19), 5523–5530.
doi:https://doi.org/10.3390/s20195523.
- Oloyede, M. O., & Hancke, G. P. (2016). Unimodal and Multimodal Biometric Sensing Systems: A
Review. IEEE Access, 4, 7532–7555. doi:https://doi.org/10.1109/ACCESS.2016.2614720
- Regouid, M., Touahria, M., Benouis, M., & Costen, N. (2019). Multimodal biometric system for
ECG , ear and iris recognition based on local descriptors. Multimed Tools Appl, 78, 22509–22535.
doi:https://doi.org/10.1007/s11042-019-7467-x
- s, K. R. (2023). A Deep Learning Technique for Bi-Fold Grading of an Eye Disorder DR-Diabetic
Retinopathy. Data Analytics and Artificial Intelligence, 3(2), 113–115.
doi:https://doi.org/10.1007/978-981-19-0151-5_32
- Singhal, P., & Kumar, A. (2022). FACE RECOGNITION USING PCA AND WAVELET
TRANSFORM. Advances and Application in Mathematical Sciences, 21(5), 2795–2802.
- Sujatha, E., & Chilambuchelvan, A. (2017). Multimodal Biometric Authentication Algorithm Using
Iris, Palm Print, Face and Signature with Encoded DWT. Wireless Personal Communications,
99(1), 23–34. doi: https://doi.org/10.1007/s11277-017-5034-1
- T., V. (2021). Synthesis of Palm Print in Feature Fusion Techniques for Multimodal Biometric
Recognition System Online Signature. Journal of Innovative Image Processing, 3(2), 131–143.
doi:https://doi.org/10.36548/jiip.2021.2.005
- Tabassum, F., Imdadul Islam, M., Tasin Khan, R., & Amin, M. R. (2022). Human face recognition
with combination of DWT and machine learning. Journal of King Saud University - Computer and
Information Sciences, 34(3), 546–556. doi:https://doi.org/10.1016/j.jksuci.2020.02.002
- Tarawneh, A. S., Chetverikov, D., & Hassanat, A. B. (2018). Pilot Comparative Study of Different
Deep Features for Palmprint Identification in Low-Quality Images. Ninth Hungarian Conference on
Computer Graphics and Geometry, 1804–1810. doi:https://doi.org/10.48550/arXiv.1804.04602
- Wang, Y., Peng, L., & Zhe, F. (2018). Face recognition using slow feature analysis and contourlet
transform. AIP Conference Proceedings,1955, 040155–040161.
doi:https://doi.org/10.1063/1.5033819
Year 2023,
Volume: 2 Issue: 2, 247 - 252, 27.12.2023
Zahraa Talal
,
Ahmed M. Alkababji
References
- Agrawal, P., Zabrovskiy, A., Ilangovan, A., Timmerer, C., & Prodan, R. (2021). FastTTPS: fast
approach for video transcoding time prediction and scheduling for HTTP adaptive streaming videos.
Cluster Computing,24(3),1605–1621.doi:https://doi.org/10.1007/s10586-020-03207-x
- Bai, Y., Haghighat, M., & Abdel-Mottaleb, M. (2018). Kernel Discriminant Correlation Analysis:
Feature Level Fusion for Nonlinear Biometric Recognition. P2018 24th International Conference
on Pattern Recognition(ICPR),3198–3203. doi:https://doi.org/10.1109/ICPR.2018.8546068
- Bc, A., & Prakash, H. N. (2022). Image fusion by discrete wavelet transform for multimodal
biometric recognition. IAES International Journal of Artificial Intelligence (IJ-AI), 11(1), 229–237.
doi:https://doi.org/10.11591/ijai.v11.i1.pp229-237
- Hardalac, F., Yaşar, H., Akyel, A., & Kutbay, U. (2020). A novel comparative study using multi-
Talal Abed, Alkababji Journal of Optimization & Decision Making 2(2), 247-252, 2023
252
resolution transforms and convolutional neural network (CNN) for contactless palm print
verification and identification. Multimedia Tools and Applications, 79(31–32), 22929–22963.
doi:https://doi.org/10.1007/s11042-020-09005-2
- Kortli, Y., Jridi, M., Al Falou, A., & Atri, M. (2020). Face recognition systems: A survey. Sensors
(Switzerland), 20(2). https://doi.org/10.3390/s20020342
- Leghari, M., Memon, S., & Chandio, A. A. (2018). Feature-Level Fusion of Fingerprint and Online
Signature for Multimodal Biometrics. 2018 International Conference on Computing, Mathematics
and Engineering Technologies (ICoMET), 2–5. doi:https://doi.org/10.1109/ICOMET.2018.8346358
- Mansoura, L., Noureddine, A., Assas, O., & Yassine, A. (2019). Multimodal Face and Iris
Recognition with Adaptive Score Normalization using Several Comparative Methods. Indian
Journal of Science and Technology, 12(7),1–8. doi:https://doi.org/10.17485/ijst/2019/v12i7/140755
- Nada Alay, H. H. A.-B. (2020). Deep Learning Approach for Multimodal Biometric Recognition
System Based on Fusion of Iris, Face, and Finger Vein Traits. Sensors, 20(19), 5523–5530.
doi:https://doi.org/10.3390/s20195523.
- Oloyede, M. O., & Hancke, G. P. (2016). Unimodal and Multimodal Biometric Sensing Systems: A
Review. IEEE Access, 4, 7532–7555. doi:https://doi.org/10.1109/ACCESS.2016.2614720
- Regouid, M., Touahria, M., Benouis, M., & Costen, N. (2019). Multimodal biometric system for
ECG , ear and iris recognition based on local descriptors. Multimed Tools Appl, 78, 22509–22535.
doi:https://doi.org/10.1007/s11042-019-7467-x
- s, K. R. (2023). A Deep Learning Technique for Bi-Fold Grading of an Eye Disorder DR-Diabetic
Retinopathy. Data Analytics and Artificial Intelligence, 3(2), 113–115.
doi:https://doi.org/10.1007/978-981-19-0151-5_32
- Singhal, P., & Kumar, A. (2022). FACE RECOGNITION USING PCA AND WAVELET
TRANSFORM. Advances and Application in Mathematical Sciences, 21(5), 2795–2802.
- Sujatha, E., & Chilambuchelvan, A. (2017). Multimodal Biometric Authentication Algorithm Using
Iris, Palm Print, Face and Signature with Encoded DWT. Wireless Personal Communications,
99(1), 23–34. doi: https://doi.org/10.1007/s11277-017-5034-1
- T., V. (2021). Synthesis of Palm Print in Feature Fusion Techniques for Multimodal Biometric
Recognition System Online Signature. Journal of Innovative Image Processing, 3(2), 131–143.
doi:https://doi.org/10.36548/jiip.2021.2.005
- Tabassum, F., Imdadul Islam, M., Tasin Khan, R., & Amin, M. R. (2022). Human face recognition
with combination of DWT and machine learning. Journal of King Saud University - Computer and
Information Sciences, 34(3), 546–556. doi:https://doi.org/10.1016/j.jksuci.2020.02.002
- Tarawneh, A. S., Chetverikov, D., & Hassanat, A. B. (2018). Pilot Comparative Study of Different
Deep Features for Palmprint Identification in Low-Quality Images. Ninth Hungarian Conference on
Computer Graphics and Geometry, 1804–1810. doi:https://doi.org/10.48550/arXiv.1804.04602
- Wang, Y., Peng, L., & Zhe, F. (2018). Face recognition using slow feature analysis and contourlet
transform. AIP Conference Proceedings,1955, 040155–040161.
doi:https://doi.org/10.1063/1.5033819