Research Article
BibTex RIS Cite
Year 2023, Volume: 2 Issue: 2, 304 - 310, 27.12.2023

Abstract

References

  • Cano-Garcia, H., Gouzouasis, I., Sotiriou, I., Saha, S., Palikaras, G., Kosmas, P., & Kallos, E. (2016). Reflection and transmission measurements using 60 GHz patch antennas in the presence of animal tissue for non-invasive glucose sensing. 2016 10th European Conference on Antennas and Propagation, EuCAP 2016, 1, 10–12. doi: https://doi.org/10.1109/EuCAP.2016.7481178
  • Cano-Garcia, H., Saha, S., Sotiriou, I., Kosmas, P., Gouzouasis, I., & Kallos, E. (2018). MillimeterWave Sensing of Diabetes-Relevant Glucose Concentration Changes in Pigs. Journal of Infrared, Millimeter, and Terahertz Waves, 39(8), 761–772. doi: https://doi.org/10.1007/s10762-018-0502-6
  • Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., Fahad, H. M., Ota, H., Shiraki, H., Kiriya, D., Lien, D. H., Brooks, G. A., Davis, R. W., & Javey, A. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587). doi: https://doi.org/10.1038/nature16521
  • Göktaş, Ö. F., Çankaya, İ., & Ermeydan, E. Ş. (2022). Mı̇lı̇metre dalga bandinda ı̇nvazı̇f olmayan bı̇r yöntem ı̇le sivilarda glı̇koz sevı̇yesı̇nı̇n belı̇rlenmesı̇. 1235–1248. doi: https://doi.org/10.17482/uumfd.1125289
  • Gonzales, W. V., Mobashsher, A. T., & Abbosh, A. (2019). The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors. In Sensors (Switzerland) (Vol. 19, Issue 4). doi: https://doi.org/10.3390/s19040800
  • Guo, D., Zhang, D., Zhang, L., & Lu, G. (2012). Non-invasive blood glucose monitoring for diabetics by means of breath signal analysis. Sensors and Actuators, B: Chemical, 173. doi: https://doi.org/10.1016/j.snb.2012.06.025
  • Hofmann, M., Bloss, M., Weigel, R., Fischer, G., & Kissinger, D. (2012). Non-invasive glucose monitoring using open electromagnetic waveguides. European Microwave Week 2012: “Space for Microwaves”, EuMW 2012, Conference Proceedings - 42nd European Microwave Conference, EuMC 2012, 546–549. doi: https://doi.org/10.23919/eumc.2012.6459152
  • Hu, S., Nagae, S., & Hirose, A. (2019). Millimeter-Wave Adaptive Glucose Concentration Estimation with Complex-Valued Neural Networks. IEEE Transactions on Biomedical Engineering, 66(7), 2065–2071. doi: https://doi.org/10.1109/TBME.2018.2883085
  • Malik, S., Gupta, S., Khadgawat, R., & Anand, S. (2015). A novel non-invasive blood glucose monitoring approach using saliva. 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems, SPICES 2015. doi: https://doi.org/10.1109/SPICES.2015.7091562
  • Nikawa, Y., & Michiyama, T. (2007). Blood-sugar monitoring by reflection of millimeter wave. AsiaPacific Microwave Conference Proceedings, APMC. doi: https://doi.org/10.1109/APMC.2007.4555070
  • Nikawa, Y., & Someya, D. (2001). Application of millimeter waves to measure blood sugar level. Asia-Pacific Microwave Conference Proceedings, APMC, 3, 1303–1306. doi: https://doi.org/10.1109/apmc.2001.985374
  • Omer, A. E., Shaker, G., & Safavi-Naeini, S. (2018). Non-invasive Glucose Monitoring at mm-Wave Frequencies. Journal of Computational Vision and Imaging Systems, 4(1). doi: https://doi.org/10.15353/jcvis.v4i1.325
  • Saha, S., Cano-Garcia, H., Sotiriou, I., Lipscombe, O., Gouzouasis, I., Koutsoupidou, M., Palikaras, G., Mackenzie, R., Reeve, T., Kosmas, P., & Kallos, E. (2017). A Glucose Sensing System Based on Transmission Measurements at Millimetre Waves using Micro strip Patch Antennas. Scientific Reports, 7(1). doi: https://doi.org/10.1038/s41598-017-06926-1
  • Siegel, P. H., Lee, Y., & Pikov, V. (2014). Millimeter-wave non-invasive monitoring of glucose in anesthetized rats. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMWTHz. doi: https://doi.org/10.1109/IRMMW-THz.2014.6956294
  • Siegel, P. H., Tang, A., Virbila, G., Kim, Y., Chang, M. C. F., & Pikov, V. (n.d.). Compact noninvasive millimeter-wave glucose sensor. 53–55.
  • Sutradhar, D., & Hazarika, D. (2022). A Review of Non-invasive Electromagnetic Blood Glucose Monitoring Techniques. Asian Pacific Journal of Health Sciences, 9(1), 98–105. doi: https://doi.org/10.21276/apjhs.2022.9.1.29
  • Xue, Y., Thalmayer, A. S., Zeising, S., Fischer, G., & Lübke, M. (2022). Commercial and Scientific Solutions for Blood Glucose Monitoring—A Review. In Sensors (Vol. 22, Issue 2). doi: https://doi.org/10.3390/s22020425
  • Zhang, J., Hodge, W., Hutnick, C., & Wang, X. (2011). Noninvasive diagnostic devices for diabetes through measuring tear glucose. In Journal of Diabetes Science and Technology (Vol. 5, Issue 1). doi: https://doi.org/10.1177/193229681100500123

EFFECT OF METALS ON THE REFLECTION COEFFICIENT FOR NON-INVASIVE GLUCOSE SENSING IN THE MILLIMETER WAVEBAND

Year 2023, Volume: 2 Issue: 2, 304 - 310, 27.12.2023

Abstract

Diabetes Mellitus is a chronic disease that affects more than 400 million people worldwide. There is still no cure for this disease today. Therefore, to minimize the side effects of the disease and to prevent hyperglycemia and hypoglycemia, it is important to determine and monitor the glucose level in blood. Invasive, minimal invasive and non-invasive methods are used to determine the glucose level in the blood. However, invasive and minimal invasive methods bring infectious and psychological risks and they are not cost-effective solutions. Besides, invasive methods cannot provide continuous monitoring of the blood glucose level and the risks for hyperglycemia and hypoglycemia during sleep cannot reduced. This situation has led researchers to determine the glucose level in the blood with a non-invasive method. In the search for a non-invasive methods, microwave and millimeter wave portion of the electromagnetic spectrum have noteworthy potential since the radiation in this band offer lower energy per photon and less scattering, meaning it can penetrate deeper into tissue to reach areas of adequate blood concentration and provide more accurate glucose monitoring. Complex permeability of blood for millimeter waveband is very sensitive to glucose concentration. In this study, materials such as brass, steel, aluminum and copper were used to re-reflect the signals applied to the glucose solution through the WR-28 adapter. It has been shown that with better reflection coefficient, glucose level can be distinguished more clearly and steel displays better reflection performance compared to other materials.

References

  • Cano-Garcia, H., Gouzouasis, I., Sotiriou, I., Saha, S., Palikaras, G., Kosmas, P., & Kallos, E. (2016). Reflection and transmission measurements using 60 GHz patch antennas in the presence of animal tissue for non-invasive glucose sensing. 2016 10th European Conference on Antennas and Propagation, EuCAP 2016, 1, 10–12. doi: https://doi.org/10.1109/EuCAP.2016.7481178
  • Cano-Garcia, H., Saha, S., Sotiriou, I., Kosmas, P., Gouzouasis, I., & Kallos, E. (2018). MillimeterWave Sensing of Diabetes-Relevant Glucose Concentration Changes in Pigs. Journal of Infrared, Millimeter, and Terahertz Waves, 39(8), 761–772. doi: https://doi.org/10.1007/s10762-018-0502-6
  • Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., Fahad, H. M., Ota, H., Shiraki, H., Kiriya, D., Lien, D. H., Brooks, G. A., Davis, R. W., & Javey, A. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587). doi: https://doi.org/10.1038/nature16521
  • Göktaş, Ö. F., Çankaya, İ., & Ermeydan, E. Ş. (2022). Mı̇lı̇metre dalga bandinda ı̇nvazı̇f olmayan bı̇r yöntem ı̇le sivilarda glı̇koz sevı̇yesı̇nı̇n belı̇rlenmesı̇. 1235–1248. doi: https://doi.org/10.17482/uumfd.1125289
  • Gonzales, W. V., Mobashsher, A. T., & Abbosh, A. (2019). The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors. In Sensors (Switzerland) (Vol. 19, Issue 4). doi: https://doi.org/10.3390/s19040800
  • Guo, D., Zhang, D., Zhang, L., & Lu, G. (2012). Non-invasive blood glucose monitoring for diabetics by means of breath signal analysis. Sensors and Actuators, B: Chemical, 173. doi: https://doi.org/10.1016/j.snb.2012.06.025
  • Hofmann, M., Bloss, M., Weigel, R., Fischer, G., & Kissinger, D. (2012). Non-invasive glucose monitoring using open electromagnetic waveguides. European Microwave Week 2012: “Space for Microwaves”, EuMW 2012, Conference Proceedings - 42nd European Microwave Conference, EuMC 2012, 546–549. doi: https://doi.org/10.23919/eumc.2012.6459152
  • Hu, S., Nagae, S., & Hirose, A. (2019). Millimeter-Wave Adaptive Glucose Concentration Estimation with Complex-Valued Neural Networks. IEEE Transactions on Biomedical Engineering, 66(7), 2065–2071. doi: https://doi.org/10.1109/TBME.2018.2883085
  • Malik, S., Gupta, S., Khadgawat, R., & Anand, S. (2015). A novel non-invasive blood glucose monitoring approach using saliva. 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems, SPICES 2015. doi: https://doi.org/10.1109/SPICES.2015.7091562
  • Nikawa, Y., & Michiyama, T. (2007). Blood-sugar monitoring by reflection of millimeter wave. AsiaPacific Microwave Conference Proceedings, APMC. doi: https://doi.org/10.1109/APMC.2007.4555070
  • Nikawa, Y., & Someya, D. (2001). Application of millimeter waves to measure blood sugar level. Asia-Pacific Microwave Conference Proceedings, APMC, 3, 1303–1306. doi: https://doi.org/10.1109/apmc.2001.985374
  • Omer, A. E., Shaker, G., & Safavi-Naeini, S. (2018). Non-invasive Glucose Monitoring at mm-Wave Frequencies. Journal of Computational Vision and Imaging Systems, 4(1). doi: https://doi.org/10.15353/jcvis.v4i1.325
  • Saha, S., Cano-Garcia, H., Sotiriou, I., Lipscombe, O., Gouzouasis, I., Koutsoupidou, M., Palikaras, G., Mackenzie, R., Reeve, T., Kosmas, P., & Kallos, E. (2017). A Glucose Sensing System Based on Transmission Measurements at Millimetre Waves using Micro strip Patch Antennas. Scientific Reports, 7(1). doi: https://doi.org/10.1038/s41598-017-06926-1
  • Siegel, P. H., Lee, Y., & Pikov, V. (2014). Millimeter-wave non-invasive monitoring of glucose in anesthetized rats. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMWTHz. doi: https://doi.org/10.1109/IRMMW-THz.2014.6956294
  • Siegel, P. H., Tang, A., Virbila, G., Kim, Y., Chang, M. C. F., & Pikov, V. (n.d.). Compact noninvasive millimeter-wave glucose sensor. 53–55.
  • Sutradhar, D., & Hazarika, D. (2022). A Review of Non-invasive Electromagnetic Blood Glucose Monitoring Techniques. Asian Pacific Journal of Health Sciences, 9(1), 98–105. doi: https://doi.org/10.21276/apjhs.2022.9.1.29
  • Xue, Y., Thalmayer, A. S., Zeising, S., Fischer, G., & Lübke, M. (2022). Commercial and Scientific Solutions for Blood Glucose Monitoring—A Review. In Sensors (Vol. 22, Issue 2). doi: https://doi.org/10.3390/s22020425
  • Zhang, J., Hodge, W., Hutnick, C., & Wang, X. (2011). Noninvasive diagnostic devices for diabetes through measuring tear glucose. In Journal of Diabetes Science and Technology (Vol. 5, Issue 1). doi: https://doi.org/10.1177/193229681100500123
There are 18 citations in total.

Details

Primary Language English
Subjects Industrial Engineering
Journal Section Research Articles
Authors

Ömer Faruk Göktaş 0000-0002-2021-4052

İlyas Çankaya 0000-0002-6072-3097

Esra Şengün Ermeydan 0000-0002-5953-4301

Early Pub Date December 27, 2023
Publication Date December 27, 2023
Published in Issue Year 2023 Volume: 2 Issue: 2

Cite

APA Göktaş, Ö. F., Çankaya, İ., & Şengün Ermeydan, E. (2023). EFFECT OF METALS ON THE REFLECTION COEFFICIENT FOR NON-INVASIVE GLUCOSE SENSING IN THE MILLIMETER WAVEBAND. Journal of Optimization and Decision Making, 2(2), 304-310.
AMA Göktaş ÖF, Çankaya İ, Şengün Ermeydan E. EFFECT OF METALS ON THE REFLECTION COEFFICIENT FOR NON-INVASIVE GLUCOSE SENSING IN THE MILLIMETER WAVEBAND. JODM. December 2023;2(2):304-310.
Chicago Göktaş, Ömer Faruk, İlyas Çankaya, and Esra Şengün Ermeydan. “EFFECT OF METALS ON THE REFLECTION COEFFICIENT FOR NON-INVASIVE GLUCOSE SENSING IN THE MILLIMETER WAVEBAND”. Journal of Optimization and Decision Making 2, no. 2 (December 2023): 304-10.
EndNote Göktaş ÖF, Çankaya İ, Şengün Ermeydan E (December 1, 2023) EFFECT OF METALS ON THE REFLECTION COEFFICIENT FOR NON-INVASIVE GLUCOSE SENSING IN THE MILLIMETER WAVEBAND. Journal of Optimization and Decision Making 2 2 304–310.
IEEE Ö. F. Göktaş, İ. Çankaya, and E. Şengün Ermeydan, “EFFECT OF METALS ON THE REFLECTION COEFFICIENT FOR NON-INVASIVE GLUCOSE SENSING IN THE MILLIMETER WAVEBAND”, JODM, vol. 2, no. 2, pp. 304–310, 2023.
ISNAD Göktaş, Ömer Faruk et al. “EFFECT OF METALS ON THE REFLECTION COEFFICIENT FOR NON-INVASIVE GLUCOSE SENSING IN THE MILLIMETER WAVEBAND”. Journal of Optimization and Decision Making 2/2 (December 2023), 304-310.
JAMA Göktaş ÖF, Çankaya İ, Şengün Ermeydan E. EFFECT OF METALS ON THE REFLECTION COEFFICIENT FOR NON-INVASIVE GLUCOSE SENSING IN THE MILLIMETER WAVEBAND. JODM. 2023;2:304–310.
MLA Göktaş, Ömer Faruk et al. “EFFECT OF METALS ON THE REFLECTION COEFFICIENT FOR NON-INVASIVE GLUCOSE SENSING IN THE MILLIMETER WAVEBAND”. Journal of Optimization and Decision Making, vol. 2, no. 2, 2023, pp. 304-10.
Vancouver Göktaş ÖF, Çankaya İ, Şengün Ermeydan E. EFFECT OF METALS ON THE REFLECTION COEFFICIENT FOR NON-INVASIVE GLUCOSE SENSING IN THE MILLIMETER WAVEBAND. JODM. 2023;2(2):304-10.