Review
BibTex RIS Cite
Year 2023, Volume: 2 Issue: 2, 373 - 380, 27.12.2023

Abstract

References

  • Asensio, J. A., Borrós, S., & Gómez-Romero, P. (2003). Enhanced conductivity in polyanioncontaining polybenzimidazoles. Improved materials for proton-exchange membranes and PEM fuel cells. Electrochemistry Communications, 5(11), 967-972. doi: https://doi.org/10.1016/j.elecom.2003.09.007.
  • Awuzie, C. I. (2017). Conducting polymers. Materials Today: Proceedings, 4(4), 5721-5726. doi: https://doi.org/10.1016/j.matpr.2017.06.036.
  • Barreto, L., Makihira, A., & Riahi, K. (2003). The hydrogen economy in the 21st century: A sustainable development scenario. International Journal of Hydrogen Energy, 28(3), 267-284. doi: https://doi.org/10.1016/S0360-3199(02)00074-5.
  • Biederman, H. (2004). Plasma polymer films. World Scientific. Imperial College Press, ISBN:1- 86094-467.
  • Das, T. K., & Prusty, S. (2012). Review on Conducting Polymers and Their Applications. PolymerPlastics Technology and Engineering, 51(14), 1487-1500. doi:https://doi.org/10.1080/03602559.2012.710697.
  • Gao, Y. (2017). Graphene and Polymer Composites for Supercapacitor Applications: A Review. Nanoscale Research Letters, 12(1), 387. doi: https://doi.org/10.1186/s11671-017-2150.
  • Gubler, L., & Scherer, G. G. (2010). Trends for fuel cell membrane development. Desalination, 250(3), 1034-1037. doi: https://doi.org/10.1016/j.desal.2009.09.101.
  • Hadipour, A., de Boer, B., & Blom, P. W. M. (2008). Organic Tandem and Multi‐Junction Solar Cells. Advanced Functional Materials, 18(2), 169-181. doi: https://doi.org/10.1002/adfm.200700517. Jensen, J. O., Li, Q., He, R., Pan, C., & Bjerrum, N. J. (2005). 100–200 C polymer fuel cells for use with NaAlH4. Journal of alloys and compounds, 404, 653-656. doi:https://doi.org/10.1016/j.jallcom.2005.02.091.
  • Kausar, A. (2017). Overview on conducting polymer in energy storage and energy conversion system. Journal of Macromolecular Science, Part A, 54(9), 640-653. doi:https://doi.org/10.1080/10601325.2017.1317210.
  • Kerres, J., Ullrich, A., Meier, F., & Häring, T. (1999). Synthesis and characterization of novel acid– base polymer blends for application in membrane fuel cells. Solid state ionics, 125(1-4), 243-249. doi:https://doi.org/10.1016/S0167-2738(99)00181-2.
  • Kumar, R., Singh, S., & Yadav, B. C. (2015). Conducting polymers: Synthesis, properties and applications. International Advanced Research Journal in Science, Engineering and Technology, 2(11), 110-124. doi: https://doi.org/10.17148/IARJSET.2015.21123.
  • Li, K., Li, Z., Feng, K., Xu, X., Wang, L., & Peng, Q. (2013). Development of Large Band-Gap Conjugated Copolymers for Efficient Regular Single and Tandem Organic Solar Cells. Journal of the American Chemical Society, 135(36), 13549-13557. doi: https://doi.org/10.1021/ja406220a.
  • Li, M., Gao, K., Wan, X., Zhang, Q., Kan, B., Xia, R., Liu, F., Yang, X., Feng, H., & Ni, W. (2017). Solution-processed organic tandem solar cells with power conversion efficiencies> 12%. Nature Photonics, 11(2), 85-90. doi: https://doi.org/10.3390/ma10070780.
  • Li, X., Chen, D., Xu, D., Zhao, C., Wang, Z., Lu, H., & Na, H. (2006). SPEEKK/polyaniline (PANI) composite membranes for direct methanol fuel cell usages. Journal of Membrane Science, 275(1-2), 134-140. doi: https://doi.org/10.1016/j.memsci.2005.09.018.
  • Malta, M., Louarn, G., Errien, N.,Torresi, R. M. (2003). Nanofibers composite vanadium oxide/polyaniline: Synthesis and characterization of an electroactive anisotropic structure. Electrochemistry communications, 5(12), 1011-1015. doi: https://doi.org/10.1016/j.elecom.2003.09.016.
  • Nagarale, R. K., Gohil, G. S., & Shahi, V. K. (2006). Sulfonated poly (ether ether ketone)/polyaniline composite proton-exchange membrane. Journal of Membrane Science, 280(1-2), 389-396. doi: doi.10.1016/j.memsci.2006.01.043.
  • Naveen, M. H., Gurudatt, N. G., & Shim, Y.-B. (2017). Applications of conducting polymer composites to electrochemical sensors: A review. Applied materials today, 9, 419-433. doi: https://doi.org/10.1016/j.apmt.2017.09.001.
  • Özkan, G., Akkuş, M. S., & Özkan, G. (2019). The effects of operating conditions on hydrogen production from sodium borohydride using Box-Wilson optimization technique. International Journal of Hydrogen Energy, 44(20), 9811-9816. doi: https://doi.org/10.1016/j.ijhydene.2018.12.134.
  • Palaniappan, S., & John, A. (2008). Polyaniline materials by emulsion polymerization pathway. Progress in polymer science, 33(7), 732-758. doi: https://doi.org/10.1016/j.progpolymsci.2008.02.002.
  • Murad, R., A., Iraqi, A., Aziz, S. B., N. Abdullah, S., & Brza, M. A. (2020). Conducting polymers for optoelectronic devices and organic solar cells: A review. Polymers, 12(11), 2627. doi: https://doi.org/10.3390/polym12112627.
  • Roncali, J. (2011). Single Material Solar Cells: The Next Frontier for Organic Photovoltaics? Advanced Energy Materials, 1(2), 147-160. doi: https://doi.org/10.1002/aenm.201000008.
  • Saito, M., Arimura, N., Hayamizu, K., Okada, T. (2004). Mechanisms of Ion and Water Transport in Perfluorosulfonated Ionomer Membranes for Fuel Cells. The Journal of Physical Chem. B, 108(41), 16064-16070. doi: https://doi.org/10.1021/jp0482565

Advances in Synthesis and Energy Applications of Conductive Polymers

Year 2023, Volume: 2 Issue: 2, 373 - 380, 27.12.2023

Abstract

In this study provides a thorough summary of the latest advancements in conductive polymer manufacturing techniques and their diverse range of energy applications. Because of their distinctive electrical, optical, and electrochemical characteristics, conductive polymers have attracted a lot of attention and are now considered cutting-edge materials for energy-related technologies.
The paper investigates a variety of synthesis medhods, including chemical, electrochemical polymerization, vapor phase synthesis, pyrolysis, solid-state method, plasma polymerization, etc. The focus is on adjusting synthesis parameters, such as dopants, functional groups, and nanostructured structures, to modify the characteristics of conductive polymers for certain energy uses. Furthermore, the important functions that these polymers play in a variety of energy conversion and storage technologies are thoroughly examined in this article. Elucidating their roles in improving energy density, cyclic stability, and power output, it highlights their importance in supercapacitors, batteries, and energy harvesting systems.
In summary, this article presents a detailed on the synthesis techniques and diverse energy applications of conductive polymers, purposing to guide researchers, engineers, and practitioners toward harnessing for the development of energy technologies.

References

  • Asensio, J. A., Borrós, S., & Gómez-Romero, P. (2003). Enhanced conductivity in polyanioncontaining polybenzimidazoles. Improved materials for proton-exchange membranes and PEM fuel cells. Electrochemistry Communications, 5(11), 967-972. doi: https://doi.org/10.1016/j.elecom.2003.09.007.
  • Awuzie, C. I. (2017). Conducting polymers. Materials Today: Proceedings, 4(4), 5721-5726. doi: https://doi.org/10.1016/j.matpr.2017.06.036.
  • Barreto, L., Makihira, A., & Riahi, K. (2003). The hydrogen economy in the 21st century: A sustainable development scenario. International Journal of Hydrogen Energy, 28(3), 267-284. doi: https://doi.org/10.1016/S0360-3199(02)00074-5.
  • Biederman, H. (2004). Plasma polymer films. World Scientific. Imperial College Press, ISBN:1- 86094-467.
  • Das, T. K., & Prusty, S. (2012). Review on Conducting Polymers and Their Applications. PolymerPlastics Technology and Engineering, 51(14), 1487-1500. doi:https://doi.org/10.1080/03602559.2012.710697.
  • Gao, Y. (2017). Graphene and Polymer Composites for Supercapacitor Applications: A Review. Nanoscale Research Letters, 12(1), 387. doi: https://doi.org/10.1186/s11671-017-2150.
  • Gubler, L., & Scherer, G. G. (2010). Trends for fuel cell membrane development. Desalination, 250(3), 1034-1037. doi: https://doi.org/10.1016/j.desal.2009.09.101.
  • Hadipour, A., de Boer, B., & Blom, P. W. M. (2008). Organic Tandem and Multi‐Junction Solar Cells. Advanced Functional Materials, 18(2), 169-181. doi: https://doi.org/10.1002/adfm.200700517. Jensen, J. O., Li, Q., He, R., Pan, C., & Bjerrum, N. J. (2005). 100–200 C polymer fuel cells for use with NaAlH4. Journal of alloys and compounds, 404, 653-656. doi:https://doi.org/10.1016/j.jallcom.2005.02.091.
  • Kausar, A. (2017). Overview on conducting polymer in energy storage and energy conversion system. Journal of Macromolecular Science, Part A, 54(9), 640-653. doi:https://doi.org/10.1080/10601325.2017.1317210.
  • Kerres, J., Ullrich, A., Meier, F., & Häring, T. (1999). Synthesis and characterization of novel acid– base polymer blends for application in membrane fuel cells. Solid state ionics, 125(1-4), 243-249. doi:https://doi.org/10.1016/S0167-2738(99)00181-2.
  • Kumar, R., Singh, S., & Yadav, B. C. (2015). Conducting polymers: Synthesis, properties and applications. International Advanced Research Journal in Science, Engineering and Technology, 2(11), 110-124. doi: https://doi.org/10.17148/IARJSET.2015.21123.
  • Li, K., Li, Z., Feng, K., Xu, X., Wang, L., & Peng, Q. (2013). Development of Large Band-Gap Conjugated Copolymers for Efficient Regular Single and Tandem Organic Solar Cells. Journal of the American Chemical Society, 135(36), 13549-13557. doi: https://doi.org/10.1021/ja406220a.
  • Li, M., Gao, K., Wan, X., Zhang, Q., Kan, B., Xia, R., Liu, F., Yang, X., Feng, H., & Ni, W. (2017). Solution-processed organic tandem solar cells with power conversion efficiencies> 12%. Nature Photonics, 11(2), 85-90. doi: https://doi.org/10.3390/ma10070780.
  • Li, X., Chen, D., Xu, D., Zhao, C., Wang, Z., Lu, H., & Na, H. (2006). SPEEKK/polyaniline (PANI) composite membranes for direct methanol fuel cell usages. Journal of Membrane Science, 275(1-2), 134-140. doi: https://doi.org/10.1016/j.memsci.2005.09.018.
  • Malta, M., Louarn, G., Errien, N.,Torresi, R. M. (2003). Nanofibers composite vanadium oxide/polyaniline: Synthesis and characterization of an electroactive anisotropic structure. Electrochemistry communications, 5(12), 1011-1015. doi: https://doi.org/10.1016/j.elecom.2003.09.016.
  • Nagarale, R. K., Gohil, G. S., & Shahi, V. K. (2006). Sulfonated poly (ether ether ketone)/polyaniline composite proton-exchange membrane. Journal of Membrane Science, 280(1-2), 389-396. doi: doi.10.1016/j.memsci.2006.01.043.
  • Naveen, M. H., Gurudatt, N. G., & Shim, Y.-B. (2017). Applications of conducting polymer composites to electrochemical sensors: A review. Applied materials today, 9, 419-433. doi: https://doi.org/10.1016/j.apmt.2017.09.001.
  • Özkan, G., Akkuş, M. S., & Özkan, G. (2019). The effects of operating conditions on hydrogen production from sodium borohydride using Box-Wilson optimization technique. International Journal of Hydrogen Energy, 44(20), 9811-9816. doi: https://doi.org/10.1016/j.ijhydene.2018.12.134.
  • Palaniappan, S., & John, A. (2008). Polyaniline materials by emulsion polymerization pathway. Progress in polymer science, 33(7), 732-758. doi: https://doi.org/10.1016/j.progpolymsci.2008.02.002.
  • Murad, R., A., Iraqi, A., Aziz, S. B., N. Abdullah, S., & Brza, M. A. (2020). Conducting polymers for optoelectronic devices and organic solar cells: A review. Polymers, 12(11), 2627. doi: https://doi.org/10.3390/polym12112627.
  • Roncali, J. (2011). Single Material Solar Cells: The Next Frontier for Organic Photovoltaics? Advanced Energy Materials, 1(2), 147-160. doi: https://doi.org/10.1002/aenm.201000008.
  • Saito, M., Arimura, N., Hayamizu, K., Okada, T. (2004). Mechanisms of Ion and Water Transport in Perfluorosulfonated Ionomer Membranes for Fuel Cells. The Journal of Physical Chem. B, 108(41), 16064-16070. doi: https://doi.org/10.1021/jp0482565
There are 22 citations in total.

Details

Primary Language English
Subjects Manufacturing and Industrial Engineering (Other)
Journal Section Research Articles
Authors

Meryem Sena Akkuş

Bülent Yeşilata 0000-0002-1552-5403

Early Pub Date December 27, 2023
Publication Date December 27, 2023
Submission Date November 27, 2023
Acceptance Date December 11, 2023
Published in Issue Year 2023 Volume: 2 Issue: 2

Cite

APA Akkuş, M. S., & Yeşilata, B. (2023). Advances in Synthesis and Energy Applications of Conductive Polymers. Journal of Optimization and Decision Making, 2(2), 373-380.
AMA Akkuş MS, Yeşilata B. Advances in Synthesis and Energy Applications of Conductive Polymers. JODM. December 2023;2(2):373-380.
Chicago Akkuş, Meryem Sena, and Bülent Yeşilata. “Advances in Synthesis and Energy Applications of Conductive Polymers”. Journal of Optimization and Decision Making 2, no. 2 (December 2023): 373-80.
EndNote Akkuş MS, Yeşilata B (December 1, 2023) Advances in Synthesis and Energy Applications of Conductive Polymers. Journal of Optimization and Decision Making 2 2 373–380.
IEEE M. S. Akkuş and B. Yeşilata, “Advances in Synthesis and Energy Applications of Conductive Polymers”, JODM, vol. 2, no. 2, pp. 373–380, 2023.
ISNAD Akkuş, Meryem Sena - Yeşilata, Bülent. “Advances in Synthesis and Energy Applications of Conductive Polymers”. Journal of Optimization and Decision Making 2/2 (December 2023), 373-380.
JAMA Akkuş MS, Yeşilata B. Advances in Synthesis and Energy Applications of Conductive Polymers. JODM. 2023;2:373–380.
MLA Akkuş, Meryem Sena and Bülent Yeşilata. “Advances in Synthesis and Energy Applications of Conductive Polymers”. Journal of Optimization and Decision Making, vol. 2, no. 2, 2023, pp. 373-80.
Vancouver Akkuş MS, Yeşilata B. Advances in Synthesis and Energy Applications of Conductive Polymers. JODM. 2023;2(2):373-80.