Research Article
BibTex RIS Cite

CFD simulation of the Impact of Eagle Bioinspired Wing Slots for Reducing Induced Drag and Enhancing Flight Efficiency in UAVs

Year 2026, Volume: 05, 1 - 13, 17.12.2025
https://doi.org/10.54709/joebs.1781579

Abstract

This research examines the aerodynamic performance of three UAV wing configurations base wing, Model A with cambered wingslots, and Model B with symmetrical wingslots at low Reynolds numbers. Using CFD simulations in ANSYS FLUENT, key parameters such as lift coefficient, drag coefficient, induced drag, and lift-to-drag ratio were analysed across angles of attack from 0° to 15° and flight velocities of 8 m/s, 10 m/s, and 12 m/s. Results reveal that wing slots enhance aerodynamic efficiency by 12.5% at low angles of attack. Model A with cambered wingslots excels in pre-stall lift generation, while Model B with symmetrical wingslots achieves lower drag at lower angles. Both configu-rations significantly reduce induced drag by up to 29% during cruise conditions, highlighting their effectiveness in im-proving UAV performance.

References

  • 1. Sun J, Hoekstra JM, Ellerbroek J. Aircraft drag polar estimation based on a stochastic hierarchical model. SESAR Innov Days. 2018;(December).
  • 2. Savile OBO. ADAPTIVE EVOLUTION IN THE AVIAN WING. Evolution (N Y) [Internet]. 1957 Jun 1;11(2):212–24. Available from: https://doi.org/10.1111/j.1558-5646.1957.tb02889.x
  • 3. Tucker VA. Drag Reduction by Wing Tip Slots in a Gliding Harris’ Hawk, Parabuteo Unicinctus . J Exp Biol. 1995;198(3):775–81.
  • 4. Lynch M, Mandadzhiev B, Wissa A. Bioinspired wingtip devices: A pathway to improve aerodynamic performance during low Reynolds number flight. Bioinspiration and Biomimetics [Internet]. 2018;13(3):aaac53. Available from: https://doi.org/10.1088/1748-3190/aaac53
  • 5. Azargoon Y, Djavareshkian MH. Unsteady aerodynamics of flapping bionic eagle wings in forward flight: An experimental and numerical study. Proc Inst Mech Eng Part C J Mech Eng Sci. 2023;237(9):2090–107.
  • 6. Bardera R, Rodríguez-Sevillano ÁA, Barroso E, Matías JC. Numerical analysis of a biomimetic UAV with variable length grids wingtips. Results Eng. 2023;18(February).
  • 7. Rodríguez Sevillano AA, Bardera Mora R, Barcala Montejano M, Barroso Barderas E, Díez Arancibia I. Design of Multiple Winglets for Enhancing Aerodynamics in a Micro Air Vehicle. 2019;
  • 8. Genç MS, Koca K, Açikel HH, Özkan G, Kiriş MS, Yildiz R. Flow characteristics over NACA4412 airfoil at low Reynolds number. EPJ Web Conf. 2016;114:1–5.
  • 9. John D. Anderson J. Fundamentals of Aerodynamics (in SI units). Vol. 116, The Aeronautical Journal. 2012. 1103 p.

Year 2026, Volume: 05, 1 - 13, 17.12.2025
https://doi.org/10.54709/joebs.1781579

Abstract

References

  • 1. Sun J, Hoekstra JM, Ellerbroek J. Aircraft drag polar estimation based on a stochastic hierarchical model. SESAR Innov Days. 2018;(December).
  • 2. Savile OBO. ADAPTIVE EVOLUTION IN THE AVIAN WING. Evolution (N Y) [Internet]. 1957 Jun 1;11(2):212–24. Available from: https://doi.org/10.1111/j.1558-5646.1957.tb02889.x
  • 3. Tucker VA. Drag Reduction by Wing Tip Slots in a Gliding Harris’ Hawk, Parabuteo Unicinctus . J Exp Biol. 1995;198(3):775–81.
  • 4. Lynch M, Mandadzhiev B, Wissa A. Bioinspired wingtip devices: A pathway to improve aerodynamic performance during low Reynolds number flight. Bioinspiration and Biomimetics [Internet]. 2018;13(3):aaac53. Available from: https://doi.org/10.1088/1748-3190/aaac53
  • 5. Azargoon Y, Djavareshkian MH. Unsteady aerodynamics of flapping bionic eagle wings in forward flight: An experimental and numerical study. Proc Inst Mech Eng Part C J Mech Eng Sci. 2023;237(9):2090–107.
  • 6. Bardera R, Rodríguez-Sevillano ÁA, Barroso E, Matías JC. Numerical analysis of a biomimetic UAV with variable length grids wingtips. Results Eng. 2023;18(February).
  • 7. Rodríguez Sevillano AA, Bardera Mora R, Barcala Montejano M, Barroso Barderas E, Díez Arancibia I. Design of Multiple Winglets for Enhancing Aerodynamics in a Micro Air Vehicle. 2019;
  • 8. Genç MS, Koca K, Açikel HH, Özkan G, Kiriş MS, Yildiz R. Flow characteristics over NACA4412 airfoil at low Reynolds number. EPJ Web Conf. 2016;114:1–5.
  • 9. John D. Anderson J. Fundamentals of Aerodynamics (in SI units). Vol. 116, The Aeronautical Journal. 2012. 1103 p.
There are 9 citations in total.

Details

Primary Language English
Subjects Bioinformatics and Computational Biology (Other), Aerospace Engineering (Other)
Journal Section Research Article
Authors

Issa Momodu

Anwar Beg 0000-0001-5925-6711

Sireetorn Kuharat 0009-0000-5739-9137

Submission Date September 18, 2025
Acceptance Date December 17, 2025
Publication Date December 17, 2025
Published in Issue Year 2026 Volume: 05

Cite

Vancouver Momodu I, Beg A, Kuharat S. CFD simulation of the Impact of Eagle Bioinspired Wing Slots for Reducing Induced Drag and Enhancing Flight Efficiency in UAVs. JOEBS. 2025;05(05):1-13.

     download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6IjY0YjkvZGMxZC80MzY5LzY4Njc5ODZkMjZmMzEucG5nIiwiZXhwIjoxNzU5MDQ4OTc4LCJub25jZSI6IjRiNjgxM2VkMjdlOGRlYzdjN2ZjM2E1OWYwMDMzOGM2In0.muS64PI-pzVj3uw574Iq70DPGP35CC848_IRD2XGN8Q            download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6ImJiMzYvZmU4NS9jMDMyLzY4OWM5MTkxYjk3ZTcucG5nIiwiZXhwIjoxNzU5MDQ5MDkxLCJub25jZSI6ImIxMjllNWRlMWNhNjYwNjBmMmEwZTk5ODNkY2I0MzkwIn0.DxiKu0Zpn-vPFgUBGsuiCr39WTnZPy8JTQbJWrG4Xs0             download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6ImQ2NjAvMjFjYS9kNTJkLzY4OWM4YWRmODhiMzcucG5nIiwiZXhwIjoxNzU5MDQ5Mjg5LCJub25jZSI6Ijk5NDNlOTRiN2NkY2ZlNDdjY2ViYjdmMjYwOWFhMmU4In0.FdEZrYIbOOKE9ViBoDcEp2PUU5HWJc6EgaKe2KfZqU0

Flag Counter

(CC BY-NC-SA 4.0). Deed | Attribution-NonCommercial-ShareAlike 4.0 International | Creative Commons