Year 2025,
Volume: 04, 9 - 18
Abdirahman Mohamud
,
Ahmet Karakaş
,
Tekin Yeken
,
Şerafeddin Çakır
References
-
1. Akujieze CO, Coker OA, Oteze O. Groundwater in Nigeria: a millennium experience – distribution, practice, problems and solutions. Hydrogeol J. 2003;11(2):259–74. doi:10.1007/s10040-002-0227-3
-
2. Mohammad A, Musa MF, Sulaiman AA, Alshahrani HA. Remote sensing and GIS-based delineation of groundwater potential zones in semi-arid areas of Saudi Arabia using AHP and bivariate statistical methods.Water.2023;15(10):1960. doi:10.3390/w15101960
-
3. Shekhar S, Pandey AC. GIS-based groundwater potential mapping using Analytic Hierarchy Process: a case study from Dhanbad district, Jharkhand, India. Int J Environ Sci. 2014;4(5):814–24.
-
4. Kamaraj P, Jothimani M, Panda B, Sabarathinam C. Mapping of groundwater potential zones by integrating remote sensing, geophysics, GIS, and AHP in a hard rock terrain. Urban Climate. 2023;51:101610. doi:10.1016/j.uclim.2023.101610
-
5. Kaliraj S, Chandrasekar N, Magesh NS. Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arabian J Geosci. 2014;7:1385–1401. doi:10.1007/s12517-013-0849-x
-
6. Aykut T. Determination of groundwater potential zones using GIS and AHP between Edirne-Kalkansogut, northwestern Turkey. Groundwater Sustain Dev. 2021;12:100545.
-
7. Çelik MÖ, Kuşak L, Yakar M. Assessment of groundwater potential zones utilizing GIS-based AHP and multi-criteria decision-making: A case study in Mersin, Türkiye. Sustainability. 2024;16(5):2202.
-
8. Aslan V. Determination of Van Basin groundwater potential by GIS-based AHP and Fuzzy-AHP methods. J Agric Sci. 2024;30(1):47–60.
-
9. Ahmadi H, Kaya OA, Babadagi E, Savas T, Pekkan E. GIS-based groundwater potential mapping using AHP and FR models in central Antalya, Turkey. Environ Sci Proc. 2020;5(1):11.
-
10. Selvam S, Dar FA, Magesh NS, Singaraja C, Venkatramanan S, Chung SY. Application of remote sensing and GIS for delineating groundwater recharge potential zones of Kovilpatti Municipality, Tamil Nadu using IF technique. Earth Sci Inform. 2016;9(2):137–150. doi:10.1007/s12145-015-0242-2
-
11. Preeja KR, Joseph S, Thomas J, Vijith H. Identification of Groundwater Potential Zones of a Tropical River Basin (Kerala, India) Using Remote Sensing and GIS Techniques. J Indian Soc Remote Sens. 2011;39(1):83–9. doi:10.1007/s12524-011-0075-5
-
12. Kaliraj S, Chandrasekar N, Magesh NS. Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arabian J Geosci. 2014;7:1385–1401.
-
13. Ejepu JS, Muftau OJ, Suleiman A, Marrietta AM. Groundwater exploration using multi-criteria decision analysis and analytic hierarchy process in Federal Capital Territory, Abuja, central Nigeria. Int J Geosci. 2022;13:33–53.
-
14. Ifediegwu SI. Assessment of groundwater potential zones using GIS and AHP techniques: a case study of the Lafia district, Nasarawa State, Nigeria. Appl Water Sci. 2022;12(10):10.
-
15. Tolche AD. Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin, Ethiopia. Geol Ecol Landsc. 2021;5:65–80.
-
16. Moharir KN, Pande CB, Gautam VK, Singh SK, Rane NL. Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India. Environ Res. 2023;228:115832. doi:10.1016/j.envres.2023.115832
-
17. Topçuoğlu ME. İzmit Havzası'nın hidrojeoloji incelemesi ve yeraltısuyu akım modellemesi (Hydrogeological investigation and groundwater flow modeling of İzmit Basin) [dissertation]. Istanbul (Turkey): Istanbul Technical University; 2022 May. Available from: YÖK National Thesis Center. Tez No: 74438
-
18. Saaty TL. A scaling method for priorities in hierarchical structures. J Math Psychol. 1977;15(3):234–81.
-
19. Mokarram M, Sathyamoorthy D. Modeling the relationship between elevation, aspect and spatial distribution of vegetation in the Darab Mountain, Iran using remote sensing data. Model Earth Syst Environ. 2015;1(4). doi:10.1007/s40808-015-0038-x
-
20. Tesfaye T. Ground water potential evaluation based on integrated GIS and RS techniques in Bilate river catchment, South Rift Valley of Ethiopia. Am Sci Res J Eng Technol Sci. 2010. Available from: http://asrjetsjournal.org
-
21. Ajay KV, Mondal NC, Ahmed S. Identification of groundwater potential zones using RS, GIS and AHP techniques: a case study in a part of Deccan Volcanic Province (DVP), Maharashtra, India. J Indian Soc Remote Sens. 2020;48:497–511. doi:10.1007/s12524-019-01086-3
-
22. Fashae O, Tijani R, Talabi V, Adedeji A. Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach. Appl Water Sci. 2014;4:19–38. doi:10.1007/s13201-013-0127-9
-
23. Kumar M, Singh P, Singh P. Integrating GIS and remote sensing for delineation of groundwater potential zones in Bundelkhand Region, India. Egypt J Remote Sens Sp Sci. 2022;25:387–404.
-
24. Magesh NS, Chandrasekar N, Soundranayagam JP. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front. 2012;3:189–196. doi:10.1016/j.gsf.2011.10.007
-
25. Duguma TA, Duguma GA. Assessment of groundwater potential zones of upper Blue Nile River Basin using multi-influencing factors under GIS and RS environment: a case study on Guder watersheds, Abay basin, Oromia region, Ethiopia. Geofluids. 2022;2022:1172039.
-
26. Hagos Y, Bedaso Z, Kebede M. Delineating Groundwater Potential Zones Using Geospatial and Analytical Hierarchy Process Techniques in the Upper Omo-Gibe Basin, Ethiopia. Revue Internationale de Géomatique.2024;33(1):399–425. doi:10.32604/rig.2024.053975
Integration of Remote Sensing, GIS, and AHP for Groundwater Potential Evaluation in İzmit, Türkiye
Year 2025,
Volume: 04, 9 - 18
Abdirahman Mohamud
,
Ahmet Karakaş
,
Tekin Yeken
,
Şerafeddin Çakır
Abstract
Groundwater potential in Izmit, Türkiye, is systematically assessed in this study through a GIS and Remote Sens-ing-based framework integrated with the Analytic Hierarchy Process (AHP) to evaluate seven key factors influencing groundwater distribution: geology, lineament density, slope, drainage density, land use/cover, soil classification, and rainfall distribution. The analysis delineated three distinct groundwater potential zones. High potential areas (74 km², 16%) concentrated in alluvial units with permeable lithologies, dense lineaments (>1.5 km/km²), and gentle slopes (<5°); moderate potential zones (311 km², 66%) showing intermediate characteristics; and low potential areas (88 km², 18%) with restrictive features like steep slopes and impermeable geology such as the Aydos Formation and Tertiary Volcanics. The model demonstrates strong predictive capability (AUC = 0.756), identifying geology and lineaments as dominant controls. These results provide water managers and decision makers a scientifically validated tool for zone-specific groundwater strategies, from sustainable extraction in high-potential areas to managed recharge in mod-erate zones and conservation measures in low-potential regions. High potential areas are mainly located in the south and parts of the north.
Ethical Statement
This study was conducted in accordance with ethical research standards. No human participants, animals, or sensitive data were involved, and therefore ethical approval was not required.
Supporting Institution
This research did not receive any specific grant or financial support from funding agencies in the public, commercial, or not-for-profit sectors.
References
-
1. Akujieze CO, Coker OA, Oteze O. Groundwater in Nigeria: a millennium experience – distribution, practice, problems and solutions. Hydrogeol J. 2003;11(2):259–74. doi:10.1007/s10040-002-0227-3
-
2. Mohammad A, Musa MF, Sulaiman AA, Alshahrani HA. Remote sensing and GIS-based delineation of groundwater potential zones in semi-arid areas of Saudi Arabia using AHP and bivariate statistical methods.Water.2023;15(10):1960. doi:10.3390/w15101960
-
3. Shekhar S, Pandey AC. GIS-based groundwater potential mapping using Analytic Hierarchy Process: a case study from Dhanbad district, Jharkhand, India. Int J Environ Sci. 2014;4(5):814–24.
-
4. Kamaraj P, Jothimani M, Panda B, Sabarathinam C. Mapping of groundwater potential zones by integrating remote sensing, geophysics, GIS, and AHP in a hard rock terrain. Urban Climate. 2023;51:101610. doi:10.1016/j.uclim.2023.101610
-
5. Kaliraj S, Chandrasekar N, Magesh NS. Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arabian J Geosci. 2014;7:1385–1401. doi:10.1007/s12517-013-0849-x
-
6. Aykut T. Determination of groundwater potential zones using GIS and AHP between Edirne-Kalkansogut, northwestern Turkey. Groundwater Sustain Dev. 2021;12:100545.
-
7. Çelik MÖ, Kuşak L, Yakar M. Assessment of groundwater potential zones utilizing GIS-based AHP and multi-criteria decision-making: A case study in Mersin, Türkiye. Sustainability. 2024;16(5):2202.
-
8. Aslan V. Determination of Van Basin groundwater potential by GIS-based AHP and Fuzzy-AHP methods. J Agric Sci. 2024;30(1):47–60.
-
9. Ahmadi H, Kaya OA, Babadagi E, Savas T, Pekkan E. GIS-based groundwater potential mapping using AHP and FR models in central Antalya, Turkey. Environ Sci Proc. 2020;5(1):11.
-
10. Selvam S, Dar FA, Magesh NS, Singaraja C, Venkatramanan S, Chung SY. Application of remote sensing and GIS for delineating groundwater recharge potential zones of Kovilpatti Municipality, Tamil Nadu using IF technique. Earth Sci Inform. 2016;9(2):137–150. doi:10.1007/s12145-015-0242-2
-
11. Preeja KR, Joseph S, Thomas J, Vijith H. Identification of Groundwater Potential Zones of a Tropical River Basin (Kerala, India) Using Remote Sensing and GIS Techniques. J Indian Soc Remote Sens. 2011;39(1):83–9. doi:10.1007/s12524-011-0075-5
-
12. Kaliraj S, Chandrasekar N, Magesh NS. Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arabian J Geosci. 2014;7:1385–1401.
-
13. Ejepu JS, Muftau OJ, Suleiman A, Marrietta AM. Groundwater exploration using multi-criteria decision analysis and analytic hierarchy process in Federal Capital Territory, Abuja, central Nigeria. Int J Geosci. 2022;13:33–53.
-
14. Ifediegwu SI. Assessment of groundwater potential zones using GIS and AHP techniques: a case study of the Lafia district, Nasarawa State, Nigeria. Appl Water Sci. 2022;12(10):10.
-
15. Tolche AD. Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin, Ethiopia. Geol Ecol Landsc. 2021;5:65–80.
-
16. Moharir KN, Pande CB, Gautam VK, Singh SK, Rane NL. Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India. Environ Res. 2023;228:115832. doi:10.1016/j.envres.2023.115832
-
17. Topçuoğlu ME. İzmit Havzası'nın hidrojeoloji incelemesi ve yeraltısuyu akım modellemesi (Hydrogeological investigation and groundwater flow modeling of İzmit Basin) [dissertation]. Istanbul (Turkey): Istanbul Technical University; 2022 May. Available from: YÖK National Thesis Center. Tez No: 74438
-
18. Saaty TL. A scaling method for priorities in hierarchical structures. J Math Psychol. 1977;15(3):234–81.
-
19. Mokarram M, Sathyamoorthy D. Modeling the relationship between elevation, aspect and spatial distribution of vegetation in the Darab Mountain, Iran using remote sensing data. Model Earth Syst Environ. 2015;1(4). doi:10.1007/s40808-015-0038-x
-
20. Tesfaye T. Ground water potential evaluation based on integrated GIS and RS techniques in Bilate river catchment, South Rift Valley of Ethiopia. Am Sci Res J Eng Technol Sci. 2010. Available from: http://asrjetsjournal.org
-
21. Ajay KV, Mondal NC, Ahmed S. Identification of groundwater potential zones using RS, GIS and AHP techniques: a case study in a part of Deccan Volcanic Province (DVP), Maharashtra, India. J Indian Soc Remote Sens. 2020;48:497–511. doi:10.1007/s12524-019-01086-3
-
22. Fashae O, Tijani R, Talabi V, Adedeji A. Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach. Appl Water Sci. 2014;4:19–38. doi:10.1007/s13201-013-0127-9
-
23. Kumar M, Singh P, Singh P. Integrating GIS and remote sensing for delineation of groundwater potential zones in Bundelkhand Region, India. Egypt J Remote Sens Sp Sci. 2022;25:387–404.
-
24. Magesh NS, Chandrasekar N, Soundranayagam JP. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front. 2012;3:189–196. doi:10.1016/j.gsf.2011.10.007
-
25. Duguma TA, Duguma GA. Assessment of groundwater potential zones of upper Blue Nile River Basin using multi-influencing factors under GIS and RS environment: a case study on Guder watersheds, Abay basin, Oromia region, Ethiopia. Geofluids. 2022;2022:1172039.
-
26. Hagos Y, Bedaso Z, Kebede M. Delineating Groundwater Potential Zones Using Geospatial and Analytical Hierarchy Process Techniques in the Upper Omo-Gibe Basin, Ethiopia. Revue Internationale de Géomatique.2024;33(1):399–425. doi:10.32604/rig.2024.053975