Review
BibTex RIS Cite

Bankacılıkta Yapay Zeka Uygulamaları

Year 2024, Volume: 9 Issue: Special Issue, 246 - 263

Abstract

Günümüzde teknolojinin hızla ilerlemesiyle, yapay zeka(YZ) bankacılıkta büyük bir dönüşüm yaşatmaktadır. Bankalar, müşteri deneyimini iyileştirmek, robotik süreç otomasyonu ile tekrarlayan görevleri otomatikleştirerek operasyonel verimliliği artırmak, riskleri azaltmak, iç kontrol yöntemleri ve süreçlerinin etkinliğini yükseltmek, kredi başvurularını değerlendirmek ve potansiyel riskli müşterileri tespit etmek, anomalileri ve alışılmadık aktiviteleri belirleyerek, dolandırıcılıkları tespit ve önlemek için YZ teknolojilerini uygulamaktadır. Öte yandan, YZ, “veri gizliliği ve güvenliği”, “siber risk”, “veri kalitesi”, “önyargı ve tarafsızlık”, “ donanım ve personel eksikliği” gibi bazı kısıt ve zorlukları da beraberinde getirmektektedir. Eğer sözkonusu bu kısıt ve zorluklar yönetilebilirse, YZ bankacılık sektöründe finansal hizmetlerin sunumunu iyileştirerek, maliyetleri düşürerek bankaların rekabet gücünü artırmakta ve geleceğin finans dünyasını şekillendirmektedir. Bu çalışmada, YZ bankacılık uygulamaları konusundaki çalışmalar kullanım alanlarına göre incelenmektedir

References

  • ACPR (2018). Artificial Intelligence:Challenges for the Financial Centre, (Erişim: 12.5.2024) https://acpr.banque-france.fr/sites/default/files/medias/documents/2018_12_20_intelligence_artificielle_en.pdf
  • Adamopoulou, E., & Moussiades, L. (2020). Chatbots: History, technology, and applications. Machine Learning with applications, 2, 100006.
  • Adelabu, B. O., & Carroll, T. (2021). Credit Risk:Assessing Defaultability through Machine Learning Algorithms. African Institute for Mathematical Sciences (AIMS), Senegal.
  • Akbaba, A. İ., & Gündoğdu, Ç. (2021). Bankacılık hizmetlerinde yapay zekâ kullanımı. Journal of Academic Value Studies, 7(3), 298-315.
  • Aksakal, N. Y., & Ülgen, B.(2021). Yapay zekâ ve geleceğin meslekleri. TRT Akademi, 6(13), 834-853.
  • Aktaş, Z.C. (2022). Para Yöneten Robotlar, (Erişim: 13.05.2024) https://www.zeynepcandanaktas.com/blog/2022/2/13/para-yoneten-robotlar .
  • Al-Ababneh, H., Borisova, V., Zakharzhevska, A., Tkachenko, P., & Andrusiak, N. (2023). Performance of artificial intelligence technologies in banking institutions. WSEAS Trans. Bus. Econ, 20, 307-317.
  • Almutairi, M., & Nobanee, H. (2020). Artificial intelligence in financial industry. Available at SSRN 3578238.
  • Altinirmak, S., & KARAMAŞA, Ç. (2016). Comparison Of Machine Learning Techniques For Analyzing Banks’financial Distress. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 19(36), 291-304.
  • Alzaabi, F. (2021). Artificial Intelligence and Finance.
  • Angelini, E., Di Tollo, G., & Roli, A. (2008). A neural network approach for credit risk evaluation. The quarterly review of economics and finance, 48(4), 733-755.
  • Arslan, A.(2023). Danışmanlar Artık Metal Yakalı.(Erişim: 12.05.2024) https://www.inbusiness.com.tr/finans/2023/06/05/danismanlar-artik-metal-yakali
  • Babaev, D., Savchenko, M., Tuzhilin, A., & Umerenkov, D. (2019). Et-rnn: Applying deep learning to credit loan applications. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (2183-2190).
  • Bachinskiy, A.(2019). The Growing Impact of AI in Financial Services: Six Examples, (Erişim: 02.05.2024) https://towardsdatascience.com/the-growing-impact-of-ai-in-financial-services-six-examples-da386c0301b2
  • Bahoo, S., Cucculelli, M., Goga, X., & Mondolo, J. (2024). Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis. SN Business & Economics, 4(2), 23.
  • Bahrammirzaee, A. (2010). A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Computing and Applications, 19(8), 1165-1195.
  • Bastos, J. (2007). Credit scoring with boosted decision trees.(Erişim: 28.08.2024)https://mpra.ub.uni-muenchen.de/8034/1/MPRA_paper_8034.pdf
  • Bazarbash, M. (2019). Fintech in financial inclusion: machine learning applications in assessing credit risk. International Monetary Fund.
  • Belhaj, M., & Hachaıchi, Y. (2021). Artificial Intelligence, Machine Learning and Big Data in Finance Opportunities, Challenges, and Implications for Policy Makers(Erişim:31.08.2024) https://www.researchgate.net/profile/Yassine-Hachaichi/publication/369912767_Artificial_Intelligence_Machine_Learning_and_Big_Data_in_Finance_Opportunities_Challenges_and_Implications_for_Policy_Makers/links/6433b52f20f25554da20c124/Artificial-Intelligence-Machine-Learning-and-Big-Data-in-Finance-Opportunities-Challenges-and-Implications-for-Policy-Makers.pdf
  • Bequé, A.,&Lessmann, S. (2017). Extreme learning machines for credit scoring: An empirical evaluation. Expert Systems with Applications, 86, 42-53.
  • Berdiyeva, O., Islam, M. U.&Saeedi, M.(2021). Artificial intelligence in accounting and finance:Meta-analysis. International Business Review, 3(1), 56-79.
  • Bhattacharyya,S.,Jha,S.,Tharakunnel,K.,&Westland,J.C.(2011). Data mining for credit card fraud:A comparative study. Decision support systems, 50(3), 602-613.
  • Biallas, M., & O'Neill, F. (2020). Artificial intelligence innovation in financial services.
  • Bilal Zorić, A. (2016). Predicting customer churn in banking industry using neural networks. Interdisciplinary Description of Complex Systems: INDECS, 14(2), 116-124.
  • Biswas, S., Carson, B., Chung, V.,Singh, S.,&Thomas, R.(2020). AI-bank of the future: Can banks meet the AI challenge. New York: McKinsey & Company.
  • Butaru, F., Chen, Q., Clark, B., Das, S., Lo, A. W., & Siddique, A.(2016). Risk and risk management in the credit card industry. Journal of Banking & Finance, 72, 218-239.
  • Cao, L. (2022). Ai in finance: challenges, techniques, and opportunities. ACM Computing Surveys (CSUR), 55(3), 1-38.
  • Ceran, M. (2019). Bankacilikta Dijitalleşme Kapsaminda, Öğrenen Yapay Zekâ Desteğiyle Sorunlu Kredilerin Belirlenmesi. Doktora Tezi. İstanbul: Marmara Universitesi.
  • Dastile, X., & Celik, T. (2021). Making deep learning-based predictions for credit scoring explainable. IEEE Access, 9, 50426-50440.
  • Demirdöğmez,M.(2022). Blockchain Teknolojisi Ve Yapay Zekâ. (Erişim: 04.05.2024) https://www.researchgate.net/publication/366055294_BLOCKCHAIN_TEKNOLOJISI_VE_YAPAY_ZEKA
  • Demirel, S., & Topcu, M. (2024). The Impact of Artificial Intelligence Applications on Digital Banking in Turkish Banking Industry. Advances in Human‐Computer Interaction, 2024(1), 9921363.
  • Fernández, A. (2019). Artificial intelligence in financial services. Banco de Espana Article, 3, 19.
  • Finextra and Intel (2017). The Next Big Wave: How Financial Institutions Can Stay Ahead of the AI Revolution. (Erişim: 09.05.2024) https://swissfinte.ch/wp-content/uploads/2017/05/intel_finextra_0517.pdf
  • FINTECHISTANBUL (Erişim: 5.3.2024) https://fintechistanbul.org/2024/03/05/yapay-zekanin-fintech-pazarindaki-degeri-2033te-762-milyar-dolara-ulasacak/
  • FSB Financial Stability Board (2017).  Artificial intelligence and machine learning in financial services: Market developments and financial stability implications. Financial Stability Board.
  • Galindo, J., & Tamayo, P.(2000). Credit risk assessment using statistical and machine learning: basic methodology and risk modeling applications. Computational economics, 15, 107-143.
  • Gao, L., & Xiao, J. (2021). Big data credit report in credit risk management of consumer finance. Wireless Communications and Mobile Computing, 2021(1), 4811086.
  • Gimpel, H.,Rau, D.,&Röglinger, M.(2018). Understanding FinTech start-ups–a taxonomy of consumer-oriented service offerings. Electronic Markets, 28, 245-264.
  • Giudici, P.(2018). Fintech risk management: A research challenge for artificial intelligence in finance. Frontiers in Artificial Intelligence, 1, 1.
  • Golbayani, P., Wang, D.,&Florescu, I. (2020). Application of deep neural networks to assess corporate credit rating. arXiv preprint arXiv:2003.02334.
  • Golić, Z.(2019). Finance and artificial intelligence: The fifth industrial revolution and its impact on the financial sector. Zbornik radova Ekonomskog fakulteta u Istočnom Sarajevu, (19), 67-81.
  • Gümüş, E., Medetoğlu, B., & Tutar, S. (2020). Finans ve bankacılık sisteminde yapay zekâ kullanımı: kullanıcılar üzerine bir uygulama. Bucak İşletme Fakültesi Dergisi, 3(1), 28-53.
  • Ha, V. S., & Nguyen, H. N.(2016). Credit scoring with a feature selection approach based deep learning. In MATEC web of conferences (Vol. 54, p. 05004). EDP Sciences.
  • Huang, C. L., Chen, M. C.,&Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert systems with applications, 33(4), 847-856.
  • Huang, J., Chai, J., & Cho, S. (2020). Deep learning in finance and banking: A literature review and classification. Frontiers of Business Research in China, 14(1), 13.
  • IBM (Erişim: 07.05.2024) https://www.ibm.com/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks/
  • INBUSINESS (2023). (Erişim: 13.05.2024) https://www.inbusiness.com.tr/finans/2023/06/05/danismanlar-artik-metal-yakali
  • INNOVA (Erişim: 07.05.2024) https://www.innova.com.tr/blog/dunu-insa-eden-ve-yarini-sekillendiren-yapay-zeka-turleri
  • Jagtiani, J., & Lemieux, C. (2018). Do fintech lenders penetrate areas that are underserved by traditional banks?. Journal of Economics and Business, 100, 43-54.
  • Orbay Kaya, A. (2019). Ödemeler Dünyasında Yapay Zeka Çözümleri—Türkiye’den Örnekler, (Erişim: 01.05.2024) https://medium.com/baybaynakit/%C3%B6demeler-d%C3%BCnyas%C4%B1nda-yapay-zeka-%C3%A7%C3%B6z%C3%BCmleri-t%C3%BCrkiyeden-%C3%B6rnekleri-436a208028f6
  • Ozili, P. K. (2021). Big data and artificial intelligence for financial inclusion: benefits and issues. In Artificial Intelligence, Fintech, and Financial Inclusion (pp. 1-10). CRC Press.
  • Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning algorithms. Journal of Banking & Finance, 34(11), 2767-2787.
  • Khatri, S., Arora, A., & Agrawal, A. P. (2020). Supervised machine learning algorithms for credit card fraud detection: a comparison. In 2020 10th international conference on cloud computing, data science & engineering (confluence) (pp. 680-683). IEEE.
  • Kok, J. N., Boers, E. J., Kosters, W. A., Van der Putten, P., & Poel, M. (2009). Artificial intelligence: definition, trends, techniques, and cases. Artificial intelligence, 1(270-299),51.
  • Kshetri, N. (2021). The role of artificial intelligence in promoting financial inclusion in developing countries. Journal of Global Information Technology Management, 24(1), 1-6.
  • Kumar, G., Muckley, C. B., Pham, L., & Ryan, D. (2019). Can alert models for fraud protect the elderly clients of a financial institution? The European Journal of Finance, 25(17), 1683-1707.
  • Kumar, M. R., & Gunjan, V. K. (2020). Review of machine learning models for credit scoring analysis. Ingeniería Solidaria, 16(1), 1-16.
  • Leo, M., Sharma, S., & Maddulety, K. (2019). Machine learning in banking risk management: A literature review. Risks, 7(1), 29.
  • Li, Y., Yi, J., Chen, H., & Peng, D. (2021). Theory and application of artificial intelligence in financial industry. Data Science in Finance and Economics, 1(2), 96-116.
  • Lucas, Y., & Jurgovsky, J. (2020). Credit card fraud detection using machine learning: A survey. arXiv preprint arXiv:2010.06479.
  • Mahmoud, M., Algadi, N., & Ali, A. (2008). Expert system for banking credit decision. In 2008 International conference on computer science and information technology (pp. 813-819). IEEE.
  • Martens, D., Baesens, B., Van Gestel, T., & Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. European journal of operational research, 183(3), 1466-1476.
  • McKinsey (2024). What is the AI (Artificial Intelligent)(Erişim: 09.04.2024) https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-ai
  • Nazari, M., & Alidadi, M. (2013). Measuring credit risk of bank customers using artificial neural network. Journal of Management Research, 5(2), 17.
  • Nickerson, M.A. (2019). AI: New Risks and Rewards. (Erişim: 12.5.24) https://www.sfmagazine.com/articles/2019/april/ai-new-risks-and-rewards/
  • Niu, A., Cai, B., & Cai, S. (2020). Big Data Analytics for Complex Credit Risk Assessment of Network Lending Based on SMOTEAlgorithm. Complexity, 2020(1), 8563030. (Erişim: 27.8.2024) https://onlinelibrary.wiley.com/doi/pdf/10.1155/2020/8563030
  • Nurol Portföy (2024). Bankacılık Sektöründe Yapay Zeka: Geleceğin Finansal Dönüşümü. (Erişim: 30.08.2024) https://www.nurolportfoy.com.tr/blog/bankacilik-sektorunde-yapay-zekagelecegin-finansal-donusum
  • Oreski, S., & Oreski, G. (2014). Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert systems with applications, 41(4), 2052-2064.
  • Ozili, P. K. (2021). Big data and artificial intelligence for financial inclusion: benefits and issues. In Artificial Intelligence, Fintech, and Financial Inclusion (pp. 1-10). CRC Press.
  • Özdemir, A. (2023), Finans Sektörünü Yapay Zekâ İle Birlikte Okumak:Yenilikler, Fırsatlar ve Engeller, İçinde: Yücel, R., Akyıldız, Y. Ve Er, H. (ed). Dijitalleşmenin Finans Sektörüne Getirdiği Yenilikler. Gaziantep: Özgür Yayınları.
  • Öztemel, E. (2020). Yapay zekâ ve insanlığın geleceği, İçinde: Şeker m., Bulduklu Y., Korkut C. Ve Doğrul M., Bilişim Teknolojileri ve İletişim:Birey ve Toplum Güvenliği. Ankara: Türkiye Bilimler Akademisi.
  • Özyiğit, H. (2023). “İç Kontrol Sisteminin Değerlendirilmesinde Yapay Zekâ: Bağımsız Denetçilere Yönelik Bir Araştırma”. Muhasebe ve Finansman Dergisi, (99), 103-128.
  • PagBrasil (2024). Pagshield (Erişim: 07.05.2024) https://www.pagbrasil.com/services/fraud-prevention/
  • Patel, K. (2023). Credit card analytics: a review of fraud detection and risk assessment techniques. International Journal of Computer Trends and Technology, 71(10), 69-79.
  • Pérez-Martín, A., Pérez-Torregrosa, A., & Vaca, M.(2018). Big Data techniques to measure credit banking risk in home equity loans. Journal of Business Research, 89, 448-454.
  • Pirim, A. G. H. (2006). Yapay zeka. Yaşar Üniversitesi E-Dergisi, 1(1), 81-93.
  • Quan, X. I., & Sanderson, J. (2018). Understanding the artificial intelligence business ecosystem. IEEE Engineering Management Review, 46(4), 22-25.
  • Raei, R., Saeidi Kousha, M., Fallahpour, S., &Fadaeinejad, M. (2016). A hybrid model for estimating the probability of default of corporate customers. Interdisciplinary Journal of Management Studies (Formerly known as Iranian Journal of Management Studies), 9(3), 651-673.
  • Ranjan, S., Gupta, D. R., & Gupta, D. A.(2020). Artificial intelligence in financial acumen: Challenges and opportunities. Cosmos Journal of Engineering & Technology, 10(1), 1-5.
  • Ruiz-Real, J. L., Uribe-Toril, J., Torres, J. A.,&De Pablo, J.(2021). Artificial intelligence in business and economics research: Trends and future. Journal of Business Economics and Management, 22(1), 98-117.
  • Sadgali, I., Sael, N., & Benabbou, F.(2019). Performance of machine learning techniques in the detection of financial frauds. Procedia computer science, 148, 45-54.
  • Shao, J., Lou, Z., Wang, C., Mao, J., & Ye, A.(2022). The impact of artificial intelligence (AI) finance on financing constraints of non-SOE firms in emerging markets. International Journal of Emerging Markets, 17(4), 930-944.
  • Shi, S., Tse, R., Luo, W., D’Addona, S., & Pau, G.(2022). Machine learning-driven credit risk: a systemic review. Neural Computing and Applications, 34(17), 14327-14339.
  • Singh, G., Garg, V., & Tiwari, P. (2020). Application of artificial intelligence on behavioral finance. In Recent Advances in Intelligent Information Systems and Applied Mathematics (pp. 342-353). Springer International Publishing.
  • Sirignano, J., Sadhwani, A., & Giesecke, K. (2016). Deep learning for mortgage risk. arXiv preprint arXiv:1607.02470.
  • Sokoli, M.(2023). The Impact of Artificial Intelligence on Finance. (Erişim: 11.05.2024) https://www.theseus.fi/bitstream/handle/10024/812681/Sokoli_Margarita.pdf.pdf?sequence=2
  • Song, Q.,Liu, A.,&Yang,S.Y.(2017). Stock portfolio selection using learning-to-rank algorithms with news sentiment. Neurocomputing, 264, 20-28.
  • Swankie, G. D. B., & Broby, D.(2019). Examining the impact of artificial intelligence on the evaluation of banking risk. (Erişim: 25.08.2024) https://pure.ulster.ac.uk/ws/portalfiles/portal/98692162/Swankie_Broby_2019_Examining_the_impact_of_artificial_intelligence_on_the_evaluation_of_banking_risk.pdf
  • Tamer, H. Y., & Övgün, B.(2020). Yapay zeka bağlamında dijital dönüşüm ofisi. Ankara Üniversitesi SBF Dergisi, 75(2), 775-803.
  • Tavana, M., Abtahi, A. R., Di Caprio, D.,&Poortarigh, M.(2018). An Artificial Neural Network and Bayesian Network model for liquidity risk assessment in banking. Neurocomputing, 275, 2525-2554.
  • Tsai, C. F., & Wu, J. W. (2008). Using neural network ensembles for bankruptcy prediction and credit scoring. Expert systems with applications, 34(4), 2639-2649.
  • Ukpong, E. G., Udoh, I. I., & Essien, I.T.(2019). Artificial intelligence:Opportunities, issues and applications in accounting and auditing in Nigeria. Journal of Accounting and Marketing, 8(1), 309.
  • Wang, H. (2021). Credit risk management of consumer finance based on big data. Mobile Information Systems, 2021(1), 8189255.
  • Weber, P., Carl, K. V., & Hinz, O. (2023). Applications of explainable artificial intelligence in finance—a systematic review of finance, information systems, and computer science literature. Management Review Quarterly, 1-41.
  • West, D. (2000). Neural network credit scoring models. Computers & operations research, 27(11-12), 1131-1152.
  • Wilson, H. J., Daugherty, P. R., & Morini-Bianzino, N.(2018). The jobs that artificial intelligence will create. (Erişim: 31.8.2024 ) https://www.maximo.ae/media/1306/the-jobs-that-artificial-intelligence-will-create-2-1.pdf .
  • Yakimova, V.A.E.(2020). AI-Audit: The Perspectives of Digital Technology Application in the Audit Activity. In III International Scientific and Practical Conference" Digital Economy and Finances"(ISPC-DEF 2020) (pp. 138-142). Atlantis Press.
  • Yetiz, F., Turan, Y., & Canpolat, İ. (2021). Bankacilik sektöründe robotik süreç otomasyonu ve verimlilik ilişkisi: bir banka örneği. Verimlilik Dergisi, (2), 65-80.
  • Yıldız, A. (2022). Finans Alaninda Yapay Zeka Teknolojisinin Kullanimi: Sistematik Literatür İncelemesi. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (52), 47-66.
  • Zetzsche, D. A., Arner, D. W., Buckley, R. P., & Tang, B. (2020). Artificial Intelligence in Finance:Putting the Human in the Loop. CFTE Academic Paper Series: Centre for Finance, Technology and Entrepreneurship, (1), 17.

AI Applications in the Banking Sector

Year 2024, Volume: 9 Issue: Special Issue, 246 - 263

Abstract

With the rapid advancement of technology today, artificial intelligence(AI) is driving a significant transformation in banking. Banks are applying AI technologies to improve customer experience, enhance operational efficiency by automating repetitive tasks through robotic process automation, reduce risks, increase the effectiveness of internal control methods and processes, evaluate loan applications, and identify potentially risky customers. AI is also used to detect anomalies and unusual activities, and to identify and prevent fraud. On the other hand, AI brings some constraints and challenges, such as "data privacy and security," "cyber risk," "data quality," "bias and fairness," and "hardware and personnel shortages". If these constraints and challenges can be managed, AI can improve the delivery of financial services in the banking sector, reduce costs, enhance banks' competitive edge, and shape the future of the financial world. This study reviews the literature on AI in banking applications, examining their areas of use.

References

  • ACPR (2018). Artificial Intelligence:Challenges for the Financial Centre, (Erişim: 12.5.2024) https://acpr.banque-france.fr/sites/default/files/medias/documents/2018_12_20_intelligence_artificielle_en.pdf
  • Adamopoulou, E., & Moussiades, L. (2020). Chatbots: History, technology, and applications. Machine Learning with applications, 2, 100006.
  • Adelabu, B. O., & Carroll, T. (2021). Credit Risk:Assessing Defaultability through Machine Learning Algorithms. African Institute for Mathematical Sciences (AIMS), Senegal.
  • Akbaba, A. İ., & Gündoğdu, Ç. (2021). Bankacılık hizmetlerinde yapay zekâ kullanımı. Journal of Academic Value Studies, 7(3), 298-315.
  • Aksakal, N. Y., & Ülgen, B.(2021). Yapay zekâ ve geleceğin meslekleri. TRT Akademi, 6(13), 834-853.
  • Aktaş, Z.C. (2022). Para Yöneten Robotlar, (Erişim: 13.05.2024) https://www.zeynepcandanaktas.com/blog/2022/2/13/para-yoneten-robotlar .
  • Al-Ababneh, H., Borisova, V., Zakharzhevska, A., Tkachenko, P., & Andrusiak, N. (2023). Performance of artificial intelligence technologies in banking institutions. WSEAS Trans. Bus. Econ, 20, 307-317.
  • Almutairi, M., & Nobanee, H. (2020). Artificial intelligence in financial industry. Available at SSRN 3578238.
  • Altinirmak, S., & KARAMAŞA, Ç. (2016). Comparison Of Machine Learning Techniques For Analyzing Banks’financial Distress. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 19(36), 291-304.
  • Alzaabi, F. (2021). Artificial Intelligence and Finance.
  • Angelini, E., Di Tollo, G., & Roli, A. (2008). A neural network approach for credit risk evaluation. The quarterly review of economics and finance, 48(4), 733-755.
  • Arslan, A.(2023). Danışmanlar Artık Metal Yakalı.(Erişim: 12.05.2024) https://www.inbusiness.com.tr/finans/2023/06/05/danismanlar-artik-metal-yakali
  • Babaev, D., Savchenko, M., Tuzhilin, A., & Umerenkov, D. (2019). Et-rnn: Applying deep learning to credit loan applications. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (2183-2190).
  • Bachinskiy, A.(2019). The Growing Impact of AI in Financial Services: Six Examples, (Erişim: 02.05.2024) https://towardsdatascience.com/the-growing-impact-of-ai-in-financial-services-six-examples-da386c0301b2
  • Bahoo, S., Cucculelli, M., Goga, X., & Mondolo, J. (2024). Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis. SN Business & Economics, 4(2), 23.
  • Bahrammirzaee, A. (2010). A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Computing and Applications, 19(8), 1165-1195.
  • Bastos, J. (2007). Credit scoring with boosted decision trees.(Erişim: 28.08.2024)https://mpra.ub.uni-muenchen.de/8034/1/MPRA_paper_8034.pdf
  • Bazarbash, M. (2019). Fintech in financial inclusion: machine learning applications in assessing credit risk. International Monetary Fund.
  • Belhaj, M., & Hachaıchi, Y. (2021). Artificial Intelligence, Machine Learning and Big Data in Finance Opportunities, Challenges, and Implications for Policy Makers(Erişim:31.08.2024) https://www.researchgate.net/profile/Yassine-Hachaichi/publication/369912767_Artificial_Intelligence_Machine_Learning_and_Big_Data_in_Finance_Opportunities_Challenges_and_Implications_for_Policy_Makers/links/6433b52f20f25554da20c124/Artificial-Intelligence-Machine-Learning-and-Big-Data-in-Finance-Opportunities-Challenges-and-Implications-for-Policy-Makers.pdf
  • Bequé, A.,&Lessmann, S. (2017). Extreme learning machines for credit scoring: An empirical evaluation. Expert Systems with Applications, 86, 42-53.
  • Berdiyeva, O., Islam, M. U.&Saeedi, M.(2021). Artificial intelligence in accounting and finance:Meta-analysis. International Business Review, 3(1), 56-79.
  • Bhattacharyya,S.,Jha,S.,Tharakunnel,K.,&Westland,J.C.(2011). Data mining for credit card fraud:A comparative study. Decision support systems, 50(3), 602-613.
  • Biallas, M., & O'Neill, F. (2020). Artificial intelligence innovation in financial services.
  • Bilal Zorić, A. (2016). Predicting customer churn in banking industry using neural networks. Interdisciplinary Description of Complex Systems: INDECS, 14(2), 116-124.
  • Biswas, S., Carson, B., Chung, V.,Singh, S.,&Thomas, R.(2020). AI-bank of the future: Can banks meet the AI challenge. New York: McKinsey & Company.
  • Butaru, F., Chen, Q., Clark, B., Das, S., Lo, A. W., & Siddique, A.(2016). Risk and risk management in the credit card industry. Journal of Banking & Finance, 72, 218-239.
  • Cao, L. (2022). Ai in finance: challenges, techniques, and opportunities. ACM Computing Surveys (CSUR), 55(3), 1-38.
  • Ceran, M. (2019). Bankacilikta Dijitalleşme Kapsaminda, Öğrenen Yapay Zekâ Desteğiyle Sorunlu Kredilerin Belirlenmesi. Doktora Tezi. İstanbul: Marmara Universitesi.
  • Dastile, X., & Celik, T. (2021). Making deep learning-based predictions for credit scoring explainable. IEEE Access, 9, 50426-50440.
  • Demirdöğmez,M.(2022). Blockchain Teknolojisi Ve Yapay Zekâ. (Erişim: 04.05.2024) https://www.researchgate.net/publication/366055294_BLOCKCHAIN_TEKNOLOJISI_VE_YAPAY_ZEKA
  • Demirel, S., & Topcu, M. (2024). The Impact of Artificial Intelligence Applications on Digital Banking in Turkish Banking Industry. Advances in Human‐Computer Interaction, 2024(1), 9921363.
  • Fernández, A. (2019). Artificial intelligence in financial services. Banco de Espana Article, 3, 19.
  • Finextra and Intel (2017). The Next Big Wave: How Financial Institutions Can Stay Ahead of the AI Revolution. (Erişim: 09.05.2024) https://swissfinte.ch/wp-content/uploads/2017/05/intel_finextra_0517.pdf
  • FINTECHISTANBUL (Erişim: 5.3.2024) https://fintechistanbul.org/2024/03/05/yapay-zekanin-fintech-pazarindaki-degeri-2033te-762-milyar-dolara-ulasacak/
  • FSB Financial Stability Board (2017).  Artificial intelligence and machine learning in financial services: Market developments and financial stability implications. Financial Stability Board.
  • Galindo, J., & Tamayo, P.(2000). Credit risk assessment using statistical and machine learning: basic methodology and risk modeling applications. Computational economics, 15, 107-143.
  • Gao, L., & Xiao, J. (2021). Big data credit report in credit risk management of consumer finance. Wireless Communications and Mobile Computing, 2021(1), 4811086.
  • Gimpel, H.,Rau, D.,&Röglinger, M.(2018). Understanding FinTech start-ups–a taxonomy of consumer-oriented service offerings. Electronic Markets, 28, 245-264.
  • Giudici, P.(2018). Fintech risk management: A research challenge for artificial intelligence in finance. Frontiers in Artificial Intelligence, 1, 1.
  • Golbayani, P., Wang, D.,&Florescu, I. (2020). Application of deep neural networks to assess corporate credit rating. arXiv preprint arXiv:2003.02334.
  • Golić, Z.(2019). Finance and artificial intelligence: The fifth industrial revolution and its impact on the financial sector. Zbornik radova Ekonomskog fakulteta u Istočnom Sarajevu, (19), 67-81.
  • Gümüş, E., Medetoğlu, B., & Tutar, S. (2020). Finans ve bankacılık sisteminde yapay zekâ kullanımı: kullanıcılar üzerine bir uygulama. Bucak İşletme Fakültesi Dergisi, 3(1), 28-53.
  • Ha, V. S., & Nguyen, H. N.(2016). Credit scoring with a feature selection approach based deep learning. In MATEC web of conferences (Vol. 54, p. 05004). EDP Sciences.
  • Huang, C. L., Chen, M. C.,&Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert systems with applications, 33(4), 847-856.
  • Huang, J., Chai, J., & Cho, S. (2020). Deep learning in finance and banking: A literature review and classification. Frontiers of Business Research in China, 14(1), 13.
  • IBM (Erişim: 07.05.2024) https://www.ibm.com/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks/
  • INBUSINESS (2023). (Erişim: 13.05.2024) https://www.inbusiness.com.tr/finans/2023/06/05/danismanlar-artik-metal-yakali
  • INNOVA (Erişim: 07.05.2024) https://www.innova.com.tr/blog/dunu-insa-eden-ve-yarini-sekillendiren-yapay-zeka-turleri
  • Jagtiani, J., & Lemieux, C. (2018). Do fintech lenders penetrate areas that are underserved by traditional banks?. Journal of Economics and Business, 100, 43-54.
  • Orbay Kaya, A. (2019). Ödemeler Dünyasında Yapay Zeka Çözümleri—Türkiye’den Örnekler, (Erişim: 01.05.2024) https://medium.com/baybaynakit/%C3%B6demeler-d%C3%BCnyas%C4%B1nda-yapay-zeka-%C3%A7%C3%B6z%C3%BCmleri-t%C3%BCrkiyeden-%C3%B6rnekleri-436a208028f6
  • Ozili, P. K. (2021). Big data and artificial intelligence for financial inclusion: benefits and issues. In Artificial Intelligence, Fintech, and Financial Inclusion (pp. 1-10). CRC Press.
  • Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning algorithms. Journal of Banking & Finance, 34(11), 2767-2787.
  • Khatri, S., Arora, A., & Agrawal, A. P. (2020). Supervised machine learning algorithms for credit card fraud detection: a comparison. In 2020 10th international conference on cloud computing, data science & engineering (confluence) (pp. 680-683). IEEE.
  • Kok, J. N., Boers, E. J., Kosters, W. A., Van der Putten, P., & Poel, M. (2009). Artificial intelligence: definition, trends, techniques, and cases. Artificial intelligence, 1(270-299),51.
  • Kshetri, N. (2021). The role of artificial intelligence in promoting financial inclusion in developing countries. Journal of Global Information Technology Management, 24(1), 1-6.
  • Kumar, G., Muckley, C. B., Pham, L., & Ryan, D. (2019). Can alert models for fraud protect the elderly clients of a financial institution? The European Journal of Finance, 25(17), 1683-1707.
  • Kumar, M. R., & Gunjan, V. K. (2020). Review of machine learning models for credit scoring analysis. Ingeniería Solidaria, 16(1), 1-16.
  • Leo, M., Sharma, S., & Maddulety, K. (2019). Machine learning in banking risk management: A literature review. Risks, 7(1), 29.
  • Li, Y., Yi, J., Chen, H., & Peng, D. (2021). Theory and application of artificial intelligence in financial industry. Data Science in Finance and Economics, 1(2), 96-116.
  • Lucas, Y., & Jurgovsky, J. (2020). Credit card fraud detection using machine learning: A survey. arXiv preprint arXiv:2010.06479.
  • Mahmoud, M., Algadi, N., & Ali, A. (2008). Expert system for banking credit decision. In 2008 International conference on computer science and information technology (pp. 813-819). IEEE.
  • Martens, D., Baesens, B., Van Gestel, T., & Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. European journal of operational research, 183(3), 1466-1476.
  • McKinsey (2024). What is the AI (Artificial Intelligent)(Erişim: 09.04.2024) https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-ai
  • Nazari, M., & Alidadi, M. (2013). Measuring credit risk of bank customers using artificial neural network. Journal of Management Research, 5(2), 17.
  • Nickerson, M.A. (2019). AI: New Risks and Rewards. (Erişim: 12.5.24) https://www.sfmagazine.com/articles/2019/april/ai-new-risks-and-rewards/
  • Niu, A., Cai, B., & Cai, S. (2020). Big Data Analytics for Complex Credit Risk Assessment of Network Lending Based on SMOTEAlgorithm. Complexity, 2020(1), 8563030. (Erişim: 27.8.2024) https://onlinelibrary.wiley.com/doi/pdf/10.1155/2020/8563030
  • Nurol Portföy (2024). Bankacılık Sektöründe Yapay Zeka: Geleceğin Finansal Dönüşümü. (Erişim: 30.08.2024) https://www.nurolportfoy.com.tr/blog/bankacilik-sektorunde-yapay-zekagelecegin-finansal-donusum
  • Oreski, S., & Oreski, G. (2014). Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert systems with applications, 41(4), 2052-2064.
  • Ozili, P. K. (2021). Big data and artificial intelligence for financial inclusion: benefits and issues. In Artificial Intelligence, Fintech, and Financial Inclusion (pp. 1-10). CRC Press.
  • Özdemir, A. (2023), Finans Sektörünü Yapay Zekâ İle Birlikte Okumak:Yenilikler, Fırsatlar ve Engeller, İçinde: Yücel, R., Akyıldız, Y. Ve Er, H. (ed). Dijitalleşmenin Finans Sektörüne Getirdiği Yenilikler. Gaziantep: Özgür Yayınları.
  • Öztemel, E. (2020). Yapay zekâ ve insanlığın geleceği, İçinde: Şeker m., Bulduklu Y., Korkut C. Ve Doğrul M., Bilişim Teknolojileri ve İletişim:Birey ve Toplum Güvenliği. Ankara: Türkiye Bilimler Akademisi.
  • Özyiğit, H. (2023). “İç Kontrol Sisteminin Değerlendirilmesinde Yapay Zekâ: Bağımsız Denetçilere Yönelik Bir Araştırma”. Muhasebe ve Finansman Dergisi, (99), 103-128.
  • PagBrasil (2024). Pagshield (Erişim: 07.05.2024) https://www.pagbrasil.com/services/fraud-prevention/
  • Patel, K. (2023). Credit card analytics: a review of fraud detection and risk assessment techniques. International Journal of Computer Trends and Technology, 71(10), 69-79.
  • Pérez-Martín, A., Pérez-Torregrosa, A., & Vaca, M.(2018). Big Data techniques to measure credit banking risk in home equity loans. Journal of Business Research, 89, 448-454.
  • Pirim, A. G. H. (2006). Yapay zeka. Yaşar Üniversitesi E-Dergisi, 1(1), 81-93.
  • Quan, X. I., & Sanderson, J. (2018). Understanding the artificial intelligence business ecosystem. IEEE Engineering Management Review, 46(4), 22-25.
  • Raei, R., Saeidi Kousha, M., Fallahpour, S., &Fadaeinejad, M. (2016). A hybrid model for estimating the probability of default of corporate customers. Interdisciplinary Journal of Management Studies (Formerly known as Iranian Journal of Management Studies), 9(3), 651-673.
  • Ranjan, S., Gupta, D. R., & Gupta, D. A.(2020). Artificial intelligence in financial acumen: Challenges and opportunities. Cosmos Journal of Engineering & Technology, 10(1), 1-5.
  • Ruiz-Real, J. L., Uribe-Toril, J., Torres, J. A.,&De Pablo, J.(2021). Artificial intelligence in business and economics research: Trends and future. Journal of Business Economics and Management, 22(1), 98-117.
  • Sadgali, I., Sael, N., & Benabbou, F.(2019). Performance of machine learning techniques in the detection of financial frauds. Procedia computer science, 148, 45-54.
  • Shao, J., Lou, Z., Wang, C., Mao, J., & Ye, A.(2022). The impact of artificial intelligence (AI) finance on financing constraints of non-SOE firms in emerging markets. International Journal of Emerging Markets, 17(4), 930-944.
  • Shi, S., Tse, R., Luo, W., D’Addona, S., & Pau, G.(2022). Machine learning-driven credit risk: a systemic review. Neural Computing and Applications, 34(17), 14327-14339.
  • Singh, G., Garg, V., & Tiwari, P. (2020). Application of artificial intelligence on behavioral finance. In Recent Advances in Intelligent Information Systems and Applied Mathematics (pp. 342-353). Springer International Publishing.
  • Sirignano, J., Sadhwani, A., & Giesecke, K. (2016). Deep learning for mortgage risk. arXiv preprint arXiv:1607.02470.
  • Sokoli, M.(2023). The Impact of Artificial Intelligence on Finance. (Erişim: 11.05.2024) https://www.theseus.fi/bitstream/handle/10024/812681/Sokoli_Margarita.pdf.pdf?sequence=2
  • Song, Q.,Liu, A.,&Yang,S.Y.(2017). Stock portfolio selection using learning-to-rank algorithms with news sentiment. Neurocomputing, 264, 20-28.
  • Swankie, G. D. B., & Broby, D.(2019). Examining the impact of artificial intelligence on the evaluation of banking risk. (Erişim: 25.08.2024) https://pure.ulster.ac.uk/ws/portalfiles/portal/98692162/Swankie_Broby_2019_Examining_the_impact_of_artificial_intelligence_on_the_evaluation_of_banking_risk.pdf
  • Tamer, H. Y., & Övgün, B.(2020). Yapay zeka bağlamında dijital dönüşüm ofisi. Ankara Üniversitesi SBF Dergisi, 75(2), 775-803.
  • Tavana, M., Abtahi, A. R., Di Caprio, D.,&Poortarigh, M.(2018). An Artificial Neural Network and Bayesian Network model for liquidity risk assessment in banking. Neurocomputing, 275, 2525-2554.
  • Tsai, C. F., & Wu, J. W. (2008). Using neural network ensembles for bankruptcy prediction and credit scoring. Expert systems with applications, 34(4), 2639-2649.
  • Ukpong, E. G., Udoh, I. I., & Essien, I.T.(2019). Artificial intelligence:Opportunities, issues and applications in accounting and auditing in Nigeria. Journal of Accounting and Marketing, 8(1), 309.
  • Wang, H. (2021). Credit risk management of consumer finance based on big data. Mobile Information Systems, 2021(1), 8189255.
  • Weber, P., Carl, K. V., & Hinz, O. (2023). Applications of explainable artificial intelligence in finance—a systematic review of finance, information systems, and computer science literature. Management Review Quarterly, 1-41.
  • West, D. (2000). Neural network credit scoring models. Computers & operations research, 27(11-12), 1131-1152.
  • Wilson, H. J., Daugherty, P. R., & Morini-Bianzino, N.(2018). The jobs that artificial intelligence will create. (Erişim: 31.8.2024 ) https://www.maximo.ae/media/1306/the-jobs-that-artificial-intelligence-will-create-2-1.pdf .
  • Yakimova, V.A.E.(2020). AI-Audit: The Perspectives of Digital Technology Application in the Audit Activity. In III International Scientific and Practical Conference" Digital Economy and Finances"(ISPC-DEF 2020) (pp. 138-142). Atlantis Press.
  • Yetiz, F., Turan, Y., & Canpolat, İ. (2021). Bankacilik sektöründe robotik süreç otomasyonu ve verimlilik ilişkisi: bir banka örneği. Verimlilik Dergisi, (2), 65-80.
  • Yıldız, A. (2022). Finans Alaninda Yapay Zeka Teknolojisinin Kullanimi: Sistematik Literatür İncelemesi. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (52), 47-66.
  • Zetzsche, D. A., Arner, D. W., Buckley, R. P., & Tang, B. (2020). Artificial Intelligence in Finance:Putting the Human in the Loop. CFTE Academic Paper Series: Centre for Finance, Technology and Entrepreneurship, (1), 17.
There are 100 citations in total.

Details

Primary Language Turkish
Subjects Banking and Insurance (Other)
Journal Section Research Article
Authors

Sultan Sarı 0000-0002-8670-3625

Early Pub Date December 15, 2024
Publication Date
Submission Date September 11, 2024
Acceptance Date December 7, 2024
Published in Issue Year 2024 Volume: 9 Issue: Special Issue

Cite

APA Sarı, S. (2024). Bankacılıkta Yapay Zeka Uygulamaları. JOEEP: Journal of Emerging Economies and Policy, 9(Special Issue), 246-263.

JOEEP is published as two issues per year June and December and all publication policies and processes are conducted according to the international standards. JOEEP accepts and publishes the research articles in the fields of economics, political economy, fiscal economics, applied economics, business economics, labour economics and econometrics. JOEEP, without depending on any institution or organization, is a non-profit journal that has an International Editorial Board specialist on their fields. All “Publication Process” and “Writing Guidelines” are explained in the related title and it is expected from authors to Show a complete match to the rules. JOEEP is an open Access journal.