Research Article
BibTex RIS Cite

Bitkisel Çözelti Kullanılan Buğday (Triticum aestivum) Bitkisinin Kuraklık ve Tuz Stresi ile Mücadelesi

Year 2022, Volume: 3 Issue: 2, 53 - 73, 31.12.2022

Abstract

Tarım arazisi bakımından zengin olan ülkemizde hem yaz hem de kış aylarında bitkisel üretim yapılabilmektedir. Ancak, bazı bölgelerde yaz aylarında yaşanan kuraklık bitkisel üretimi olumsuz yönde etkilemektedir. Kuraklık stresine maruz kalan bitkiler, yaprak genişlemesinde azalma, yaprakların sararması ve doku ölümüne (nekroz) neden olabilir. Ayrıca kuraklık stresi, bitkinin büyüme evresinde, kuraklığın süresine ve kuraklığın yoğunluğuna bağlı olarak, buğdayda % 92 oranında verim kayıplarına neden olmaktadır. Bu verim kayıpları üreticiyi olumsuz yönde etkilemektedir. Bitkiler doğada artan su kıtlığı ile toprak tuz oranı doğrusal olarak artmaktadır. Bitkiler doğal ortamlarında birden fazla strese karşı kendini savunmaya çalışır. Bu tür durumlara karşı çiftçi, su kullanımını arttırmaktadır. Su kullanımının artması tarımsal sulama suyunun hızla azalmasına neden olmaktadır. Bu durum aynı zamanda maliyeti arttırmaktadır. Bu araştırma ile kurak tarım arazilerinin tarıma açılması teşvik edilmeye çalışılmıştır. Bu çalışma, kuraklık ve tuz uygulamalarının buğday bitkisinin çimlenmesi ve erken fide gelişimi üzerine etkisini belirlemek amacıyla gerçekleştirilmiştir. Çalışmada buğday fidelerine kuraklık ve tuz uygulamasından sonra 1., 5. ve 7. gün için fizyolojik (spesifik yaprak alanı, yaprak kütle oranı, bağıl su içeriği, kök ve gövde uzunluğu) tepkileri ölçülmeye çalışılmıştır. Ayrıca kuraklık ve tuz stresi yaşayan buğday bitkilerinde kızılçam ve kuşburnu çözeltileri uygulamasının bitki üzerindeki etkisi incelenmiştir. Yapılan farklı bitkisel uygulamaların kuraklık ve tuz stresi altında bağıl su içeriği, gövde uzunluğu ve spesifik yaprak alanında farklı oranlarda artış tespit edilmiştir. Bozkır çeşidinin kuraklık stresine Ahmetağa çeşidine göre daha dayanıklı olduğu tespit edilmiştir. Bitkisel çözeltilerin kuraklık, tuz stresleri ve her iki stresi birlikte yaşadığı durumlara karşı Ahmetağa çeşidini farklı oranlarda koruduğu tespit edilmiştir.

Supporting Institution

TÜBİTAK

Project Number

1689B012139831

References

  • [1] Castro-Diez P, Villar-Salvador P, Pérez-Rontomé C, MaestroMartínez M & Montserrat-Martí G. (1997). Leaf Morphology and Leaf Chemical Composition in Three Quercus (Fagaceae) Species Along A Rainfall Gradient In NE Spain. Trees, 11: 127- 134.
  • [2] USDA, https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery (Erişim: 30.06.2021)
  • [3] Ziegler, J. U., Leitenberger, M., Longin, C. F. H., Würschum, T., Carle, R. & Schweiggert, R. M. (2016). Near-Infrared Reflectance Spectroscopy For The Rapid Discrimination of Kernels and Flours of Different Wheat Species, Journal of Food Composition and Analysis, 51, 30-36.
  • [4] Fujita Y, Yoshida T & Yamaguchi-Shinozaki K. (2013). Pivotal Role of the AREB/ABF-SnRK2 Pathway In ABRE-Mediated Transcription in Response To Osmotic Stress in Plants. Physiologia Plantarum, 147: 15-27.
  • [5] Apel K., ve Hirt H. (2004), “Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction,” Annu. Rev. Plant Biol., 55, 373–99.
  • [6] Munns, R. & Tester M. (2008). Mechanisms of Salinity Tolerance. The Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911.
  • [7] Farooq M., Hussain M. & Siddique K. H. M. (2014). Drought Stress in Wheat During Flowering and Grain-Filling Periods. Critical Reviews in Plant Sci 33, 331–349. https://ipfs.io/ipfs/QmT5NvUtoM5nWFfrQdVrFtvGfKFmG7AHE8P34isapyhCxX/wiki/Bu%C4%9Fday. html from www.fao.org. worldfood situation/csdb/en/.
  • [8] Thomashow, M. F. (1998). Role of Cold-Responsive Genes in Plant Freezing Tolerance. Plant Physiology, 118(1); 1-8.
  • [9] Öktem, A. U. ve Aksoy, A. (2014). Türkiye’nin Su Riskleri Raporu. Osfet Yapımevi. 51 sayfa. ISBN: 978-605-86596-7-4.
  • [10] Dolferus R., Ji X. & Richards R. A. (2011). Abiotic Stress and Control of Grain Number in Cereals. Plant Science 181, 331–341.
  • [11] Kutlu İ. (2010). Tahıllarda Kuraklık Stresi. Türk Bilimsel Derlemeler Derg., (1), 35-41.
  • [12] Cattivelli L., Rizza F. & Badeck F. W. (2008). Drought Tolerance Improvement in Crop Plants: An Integrated View From Breeding To Genomics. Field Crops Research 105, 1–14.
  • [13] Mwadzingeni L., Shimelis H., Dube E., Laing M. D. & Tsilo T. J. (2016). Breeding Wheat For Drought Tolerance: Progress and Technologies. Journal of Integrative Agriculture 15, 935–943.
  • [14] Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants Under Stressful Conditions. Journal of Botany, 2012.
  • [15] Foyer, C.H. & Noctor, G. (2005). Redox Homeostasis and Antioxidant Signaling: A Metabolici Between Stress Perception and Physiological Responses. The Plant Cell, 17(7); 1866-1875.
  • [16] Andersen F. A., (2007). Final Report on the Safety Assessment of Aloe andongensis Extract, Aloe andongensis Leaf Juice, Aloe arborescens Leaf Extract, Aloe 50 Arborescens Leaf Juice, Aloe arborescens Leaf Protoplasts, Aloe barbadensis Flower Extract, Aloe barbadensis Leaf, Aloe barbadensis Leaf Extract, Aloe barbadensis Leaf Juice, Aloe barbadensis Leaf Polysaccharides, Aloe barbadensis Leaf Water, Aloe ferox Leaf Extract, Aloe ferox Leaf Juice, and Aloe ferox Leaf Juice Extract. International Journal of Toxicology, 26(Suppl. 2):1–50.
  • [17] Steponkus, P. L., Uemura, M. & Webb, M. S. (1993). A Contrast of The Cryostability of The Plasma Membrane of Winter Rye and Spring Oat–Two Species That Widely Differ in Their Freezing Tolerance and Plasma Membrane Lipid Composition. in: Advances in Low-Temperature Biology, Vol. 2, Steponkus, P. L. (ed.). JAI Press, London. 2; 211-312.
  • [18] Marcińska I., Czyczyło-Mysza I., Skrzypek E., Filek M., Grzesiak S., Grzesiak M. T., Janowiak F., Hura T., Dziurka M., Dziurka K., Nowakowska A. & Quarrie S. A., (2013). Impact of Osmotic Stress on Physiological and Biochemical Characteristics İn Drought-Susceptible and Drought-Resistant Wheat Genotypes. Acta Physiol Plant, 35: 451-461.
  • [19] Eriş A. (1990). Bahçe Bitkileri Fizyolojisi. U.Ü.Z.F. Yay.Ders Notları No: 11, Bursa.
  • [20]Haklı, E., (2008). Alternatif Sıcaklığın Su Stresi Altındaki Mercimek (Lens culinaris Medik.) Çeşitlerinin Çimlenme ve Bazı Fizyolojik Parametreleri Üzerine Etkisi. Yüksek Lisans Tezi. Çukurova Üniversitesi, Türkiye.
  • [21] Babu, M.A., Singh, D. & Gothandam, K. M. (2012). The Effect of Salinity on Growth, Hormones and Mineral Elements in Leaf and Fruit of Tomato Cultivar Pkm1. The Journal of Animal and Plant Sciences, 22(1): 159-164.
  • [22] Yılmaz, M., Kaplan, A. ve Vermez, Y. (2013). Kızılçam (Pinus brutia Ten.)'ın Üç Uç Populasyonuna Ait Bazı Tohum Özellikleri. KSÜ. Doğa Bilimleri Dergisi, 16, 55-61.
  • [23] Korkmaz, F. ve Yanar, Y. (2015). Tokat İlinde Kabakgil Üretim Alanlarında Enfeksiyon Oluşturan Virüslerin Belirlenmesi. Gaziosmanpaşa Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Tokat.
  • [24] Çelik, C. (2010). Zeytin Karasuyundan Hümik Asit ve Fulvik Asitlerin (Fa) Eldesi ve Karakterizasyonu. Yüksek Lisans Tezi. Çukurova Üniversitesi, Adana, 50s.
  • [25] Wang, W., Vınour, B. & Altman, A., (2003), Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering For Stress Tolerance, Planta, 218, 1-14.
  • [26] Boydak, M., Dirik, H. ve Çalıkoğlu, M., (2006), Kızılçamın (Pinus brutia Ten.) Biyolojisi ve Silvikültürü, Ormancılığı Geliştirme ve Orman Yangınları İle Mücadele Hizmetlerini Destekleme Vakfı, Ankara, 975-93943-4-0, 364 s.
  • [27] Amr A. H. R. & Ghaffar M. S. A., (2010). The Economic Impact of Sugar Beet Cultivation in New Lands (Study of Al-Salam Canal Area Status). Australian Journal of Basic and Applied Sciences, 4(7), 1641- 1649.
  • [28] Dirik, H., (1994a), Üç Yerli Çam Türünün (Pinus brutia Ten., Pinus nigra Arn. ssp. pallasiana Lamb. Holmboe, Pinus pinea L.) Kurak Peryottaki Transpirasyon Tutumlarının Ekofizyolojik Analizi, İ.Ü. Orman Fakültesi Dergisi, Seri A, Cilt 44, Sayı 1, s. 111 – 121.
  • [29] Stewart, W., N. & Rothwell, G. W. (1983). Paleobotany and the Evolution of Plants. Cambridge University Press. Vermicomp., part B: verms and Vermicomposting, pp1-7.
  • [30] Çiçek, S., Kilercioğlu, B., Doğan, R. ve Budaklı Çarpıcı, E. (2018). Bazı İleri Makarnalık Buğday (Triticum turgidum var. durum L.) Genotiplerinin Çimlenme Döneminde Tuz Stresine Tepkileri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 32(2), 19-29. Retrieved from https://dergipark.org.tr/tr/pub/bursauludagziraat/issue/40721/480381.
  • [31] Smart, R. E., & Bingham, G. E. (1974). Rapid Estimates of Relative Water Content. Plant physiology, 53(2):258-260.
  • [32] Bray, E. (1997). Plant Responses to Water Deficit. Trends in Plant Science, 2: 48-54.
  • [33] Çobanoğlu, M. S. (2022). Bazı Buğday Çeşitlerinde Kuraklık Stresinin Önlenmesinde Kullanılabilecek Farklı Yöntemler. Muş Alparslan University Journal of Agriculture and Nature, 2(2) , 83-91 . Retrieved from https://dergipark.org.tr/tr/pub/maujan/issue/70204/1158416.
  • [34] Gallardo, C. S., Gonzalez, J. A., Diz-Bengochoea, M., Castro, M.G., Rodriguez, LA. & Bengochea, M.D. (2000). Hand-Made Ice Cream: Microbiological Profiles in A HACCP System. Alimentaria. 37, 318, 19-24.
  • [35] Öztürk, N. Z. (2015). Bitkilerin Kuraklık Stresine Tepkilerinde Bilinenler ve Yeni Yaklaşımlar. Türk Tarım - Gıda Bilim ve Teknoloji Dergisi, 3(5): 307-315.
  • [36] Sepanlo N, Talebi R, Rokhzadi A & Mohammadi H. (2014). Morphological and Physiological Behavior in Soybean (Glycine max) Genotypes to Drought Stress Implemented At Pre- and Post-Anthesis Stages. Acta Biologica Szegediensis, 58(2):109-113.
  • [37] Nouvellon Y, Laclau J. P., Epron D, Kinana A, Mabiala A, Roupsard O, Bonnefond J. M., le Maire G, Marsden C, Bontemps JD & Saint-Andre´L (2010). Within-Stand and Seasonal Variations of Specific Leaf Area in a Clonal Eucalyptus Plantation in the Republic of Congo. Forest Ecology and Management 259: 1796-1807.
  • [38] Poorter H, Niinemets Ü, Poorter L, Wright IJ & Villar R. (2009). Causes And Consequences of Variation in Leaf Mass Per Area (LMA): a meta‐analysis. New Phytol, 182: 565-588.
  • [39] De la Riva EG, Olmo M, Poorter H, Ubera JL & Villar R. (2016). Leaf Mass Per Area (Lma) and its Relationship With Leaf Structure and Anatomy in 34 Mediterranean Woody Species Along a Water Availability Gradient. PLoSONE, 11: e0148788. https://doi.org/10.1371/journal.pone.0148788.
  • [40] Bussotti F, Prancrazi M, Matteucci G & Gerosa G. (2005). Leaf Morphology and Chemistry in Fagus sylvatica (beech) Trees as Affected by Site Factors and Ozone: Results from CONECOFOR Permanent Monitoring Plots in Italy. Tree Physiol, 25: 211-219.
  • [41] Bruschi P, Grossoni P & Bussotti F. (2003). Within-and Among Tree Variation in Leaf Morphology of Quercus petraea (Matt.) Liebl. Natural Populations. Trees, 17: 164-172.

The Struggle of Wheat (Triticum aestivum) Plant Using Herbal Solutions Against Drought and Salt Stress

Year 2022, Volume: 3 Issue: 2, 53 - 73, 31.12.2022

Abstract

In our country, which is rich in agricultural land, plant production can be done both in summer and winter months. However, drought experienced in summer months in some regions adversely affects crop production. Plants exposed to drought stress can cause decreased leaf expansion, yellowing of leaves and tissue death (necrosis). In addition, drought stress causes 92% yield losses in wheat, depending on the growth phase of the plant, the duration of the drought and the intensity of the drought. These yield losses affect the producer negatively. The soil salt ratio increases linearly with increasing water scarcity in nature. Plants try to defend themselves against multiple stresses in their natural environment. Against such situations, the farmer increases the use of water. The increase in water use causes a rapid decrease in agricultural irrigation water. This also increases the cost. With this research, it has been tried to encourage the opening of dry agricultural lands to agriculture. This study was carried out to determine the effects of drought and salt applications on germination and early seedling growth of wheat plants. In the study, it was tried to measure the physiological (specific leaf area, leaf mass ratio, relative water content, root and stem length) responses of wheat seedlings for the 1st, 5th and 7th days after drought and salt application. In addition, the effects of the application of red pine and rosehip solutions on the wheat plants experiencing drought and salt stress were investigated. It was determined that the relative water content, stem length and specific leaf area increased at different rates under drought and salt stress of different herbal applications. It has been determined that Bozkır variety is more resistant to drought stress than Ahmetağa variety. It has been determined that herbal solutions protect the Ahmetağa variety at different rates against drought, salt stress and situations where both stresses are experienced together.

Project Number

1689B012139831

References

  • [1] Castro-Diez P, Villar-Salvador P, Pérez-Rontomé C, MaestroMartínez M & Montserrat-Martí G. (1997). Leaf Morphology and Leaf Chemical Composition in Three Quercus (Fagaceae) Species Along A Rainfall Gradient In NE Spain. Trees, 11: 127- 134.
  • [2] USDA, https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery (Erişim: 30.06.2021)
  • [3] Ziegler, J. U., Leitenberger, M., Longin, C. F. H., Würschum, T., Carle, R. & Schweiggert, R. M. (2016). Near-Infrared Reflectance Spectroscopy For The Rapid Discrimination of Kernels and Flours of Different Wheat Species, Journal of Food Composition and Analysis, 51, 30-36.
  • [4] Fujita Y, Yoshida T & Yamaguchi-Shinozaki K. (2013). Pivotal Role of the AREB/ABF-SnRK2 Pathway In ABRE-Mediated Transcription in Response To Osmotic Stress in Plants. Physiologia Plantarum, 147: 15-27.
  • [5] Apel K., ve Hirt H. (2004), “Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction,” Annu. Rev. Plant Biol., 55, 373–99.
  • [6] Munns, R. & Tester M. (2008). Mechanisms of Salinity Tolerance. The Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911.
  • [7] Farooq M., Hussain M. & Siddique K. H. M. (2014). Drought Stress in Wheat During Flowering and Grain-Filling Periods. Critical Reviews in Plant Sci 33, 331–349. https://ipfs.io/ipfs/QmT5NvUtoM5nWFfrQdVrFtvGfKFmG7AHE8P34isapyhCxX/wiki/Bu%C4%9Fday. html from www.fao.org. worldfood situation/csdb/en/.
  • [8] Thomashow, M. F. (1998). Role of Cold-Responsive Genes in Plant Freezing Tolerance. Plant Physiology, 118(1); 1-8.
  • [9] Öktem, A. U. ve Aksoy, A. (2014). Türkiye’nin Su Riskleri Raporu. Osfet Yapımevi. 51 sayfa. ISBN: 978-605-86596-7-4.
  • [10] Dolferus R., Ji X. & Richards R. A. (2011). Abiotic Stress and Control of Grain Number in Cereals. Plant Science 181, 331–341.
  • [11] Kutlu İ. (2010). Tahıllarda Kuraklık Stresi. Türk Bilimsel Derlemeler Derg., (1), 35-41.
  • [12] Cattivelli L., Rizza F. & Badeck F. W. (2008). Drought Tolerance Improvement in Crop Plants: An Integrated View From Breeding To Genomics. Field Crops Research 105, 1–14.
  • [13] Mwadzingeni L., Shimelis H., Dube E., Laing M. D. & Tsilo T. J. (2016). Breeding Wheat For Drought Tolerance: Progress and Technologies. Journal of Integrative Agriculture 15, 935–943.
  • [14] Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants Under Stressful Conditions. Journal of Botany, 2012.
  • [15] Foyer, C.H. & Noctor, G. (2005). Redox Homeostasis and Antioxidant Signaling: A Metabolici Between Stress Perception and Physiological Responses. The Plant Cell, 17(7); 1866-1875.
  • [16] Andersen F. A., (2007). Final Report on the Safety Assessment of Aloe andongensis Extract, Aloe andongensis Leaf Juice, Aloe arborescens Leaf Extract, Aloe 50 Arborescens Leaf Juice, Aloe arborescens Leaf Protoplasts, Aloe barbadensis Flower Extract, Aloe barbadensis Leaf, Aloe barbadensis Leaf Extract, Aloe barbadensis Leaf Juice, Aloe barbadensis Leaf Polysaccharides, Aloe barbadensis Leaf Water, Aloe ferox Leaf Extract, Aloe ferox Leaf Juice, and Aloe ferox Leaf Juice Extract. International Journal of Toxicology, 26(Suppl. 2):1–50.
  • [17] Steponkus, P. L., Uemura, M. & Webb, M. S. (1993). A Contrast of The Cryostability of The Plasma Membrane of Winter Rye and Spring Oat–Two Species That Widely Differ in Their Freezing Tolerance and Plasma Membrane Lipid Composition. in: Advances in Low-Temperature Biology, Vol. 2, Steponkus, P. L. (ed.). JAI Press, London. 2; 211-312.
  • [18] Marcińska I., Czyczyło-Mysza I., Skrzypek E., Filek M., Grzesiak S., Grzesiak M. T., Janowiak F., Hura T., Dziurka M., Dziurka K., Nowakowska A. & Quarrie S. A., (2013). Impact of Osmotic Stress on Physiological and Biochemical Characteristics İn Drought-Susceptible and Drought-Resistant Wheat Genotypes. Acta Physiol Plant, 35: 451-461.
  • [19] Eriş A. (1990). Bahçe Bitkileri Fizyolojisi. U.Ü.Z.F. Yay.Ders Notları No: 11, Bursa.
  • [20]Haklı, E., (2008). Alternatif Sıcaklığın Su Stresi Altındaki Mercimek (Lens culinaris Medik.) Çeşitlerinin Çimlenme ve Bazı Fizyolojik Parametreleri Üzerine Etkisi. Yüksek Lisans Tezi. Çukurova Üniversitesi, Türkiye.
  • [21] Babu, M.A., Singh, D. & Gothandam, K. M. (2012). The Effect of Salinity on Growth, Hormones and Mineral Elements in Leaf and Fruit of Tomato Cultivar Pkm1. The Journal of Animal and Plant Sciences, 22(1): 159-164.
  • [22] Yılmaz, M., Kaplan, A. ve Vermez, Y. (2013). Kızılçam (Pinus brutia Ten.)'ın Üç Uç Populasyonuna Ait Bazı Tohum Özellikleri. KSÜ. Doğa Bilimleri Dergisi, 16, 55-61.
  • [23] Korkmaz, F. ve Yanar, Y. (2015). Tokat İlinde Kabakgil Üretim Alanlarında Enfeksiyon Oluşturan Virüslerin Belirlenmesi. Gaziosmanpaşa Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Tokat.
  • [24] Çelik, C. (2010). Zeytin Karasuyundan Hümik Asit ve Fulvik Asitlerin (Fa) Eldesi ve Karakterizasyonu. Yüksek Lisans Tezi. Çukurova Üniversitesi, Adana, 50s.
  • [25] Wang, W., Vınour, B. & Altman, A., (2003), Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering For Stress Tolerance, Planta, 218, 1-14.
  • [26] Boydak, M., Dirik, H. ve Çalıkoğlu, M., (2006), Kızılçamın (Pinus brutia Ten.) Biyolojisi ve Silvikültürü, Ormancılığı Geliştirme ve Orman Yangınları İle Mücadele Hizmetlerini Destekleme Vakfı, Ankara, 975-93943-4-0, 364 s.
  • [27] Amr A. H. R. & Ghaffar M. S. A., (2010). The Economic Impact of Sugar Beet Cultivation in New Lands (Study of Al-Salam Canal Area Status). Australian Journal of Basic and Applied Sciences, 4(7), 1641- 1649.
  • [28] Dirik, H., (1994a), Üç Yerli Çam Türünün (Pinus brutia Ten., Pinus nigra Arn. ssp. pallasiana Lamb. Holmboe, Pinus pinea L.) Kurak Peryottaki Transpirasyon Tutumlarının Ekofizyolojik Analizi, İ.Ü. Orman Fakültesi Dergisi, Seri A, Cilt 44, Sayı 1, s. 111 – 121.
  • [29] Stewart, W., N. & Rothwell, G. W. (1983). Paleobotany and the Evolution of Plants. Cambridge University Press. Vermicomp., part B: verms and Vermicomposting, pp1-7.
  • [30] Çiçek, S., Kilercioğlu, B., Doğan, R. ve Budaklı Çarpıcı, E. (2018). Bazı İleri Makarnalık Buğday (Triticum turgidum var. durum L.) Genotiplerinin Çimlenme Döneminde Tuz Stresine Tepkileri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 32(2), 19-29. Retrieved from https://dergipark.org.tr/tr/pub/bursauludagziraat/issue/40721/480381.
  • [31] Smart, R. E., & Bingham, G. E. (1974). Rapid Estimates of Relative Water Content. Plant physiology, 53(2):258-260.
  • [32] Bray, E. (1997). Plant Responses to Water Deficit. Trends in Plant Science, 2: 48-54.
  • [33] Çobanoğlu, M. S. (2022). Bazı Buğday Çeşitlerinde Kuraklık Stresinin Önlenmesinde Kullanılabilecek Farklı Yöntemler. Muş Alparslan University Journal of Agriculture and Nature, 2(2) , 83-91 . Retrieved from https://dergipark.org.tr/tr/pub/maujan/issue/70204/1158416.
  • [34] Gallardo, C. S., Gonzalez, J. A., Diz-Bengochoea, M., Castro, M.G., Rodriguez, LA. & Bengochea, M.D. (2000). Hand-Made Ice Cream: Microbiological Profiles in A HACCP System. Alimentaria. 37, 318, 19-24.
  • [35] Öztürk, N. Z. (2015). Bitkilerin Kuraklık Stresine Tepkilerinde Bilinenler ve Yeni Yaklaşımlar. Türk Tarım - Gıda Bilim ve Teknoloji Dergisi, 3(5): 307-315.
  • [36] Sepanlo N, Talebi R, Rokhzadi A & Mohammadi H. (2014). Morphological and Physiological Behavior in Soybean (Glycine max) Genotypes to Drought Stress Implemented At Pre- and Post-Anthesis Stages. Acta Biologica Szegediensis, 58(2):109-113.
  • [37] Nouvellon Y, Laclau J. P., Epron D, Kinana A, Mabiala A, Roupsard O, Bonnefond J. M., le Maire G, Marsden C, Bontemps JD & Saint-Andre´L (2010). Within-Stand and Seasonal Variations of Specific Leaf Area in a Clonal Eucalyptus Plantation in the Republic of Congo. Forest Ecology and Management 259: 1796-1807.
  • [38] Poorter H, Niinemets Ü, Poorter L, Wright IJ & Villar R. (2009). Causes And Consequences of Variation in Leaf Mass Per Area (LMA): a meta‐analysis. New Phytol, 182: 565-588.
  • [39] De la Riva EG, Olmo M, Poorter H, Ubera JL & Villar R. (2016). Leaf Mass Per Area (Lma) and its Relationship With Leaf Structure and Anatomy in 34 Mediterranean Woody Species Along a Water Availability Gradient. PLoSONE, 11: e0148788. https://doi.org/10.1371/journal.pone.0148788.
  • [40] Bussotti F, Prancrazi M, Matteucci G & Gerosa G. (2005). Leaf Morphology and Chemistry in Fagus sylvatica (beech) Trees as Affected by Site Factors and Ozone: Results from CONECOFOR Permanent Monitoring Plots in Italy. Tree Physiol, 25: 211-219.
  • [41] Bruschi P, Grossoni P & Bussotti F. (2003). Within-and Among Tree Variation in Leaf Morphology of Quercus petraea (Matt.) Liebl. Natural Populations. Trees, 17: 164-172.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Articles
Authors

Mehmet Selim Çobanoğlu 0000-0003-3659-2733

Project Number 1689B012139831
Publication Date December 31, 2022
Submission Date August 16, 2022
Published in Issue Year 2022 Volume: 3 Issue: 2

Cite

APA Çobanoğlu, M. S. (2022). Bitkisel Çözelti Kullanılan Buğday (Triticum aestivum) Bitkisinin Kuraklık ve Tuz Stresi ile Mücadelesi. Journal of Agricultural Biotechnology, 3(2), 53-73.