Review
BibTex RIS Cite

Asma Hidrolik İletkenliği: Akuaporinler

Year 2024, Volume: 5 Issue: 1, 1 - 10, 30.06.2024
https://doi.org/10.58728/joinabt.1414866

Abstract

Asma, ilk kez Anadolu ve Transkafkasya Bölgesinde kültüre alınan ve günümüzde Çin’den Amerika’ya, Avusturalya’dan Güney Afrika’ya ve Akdeniz ülkelerine kadar yayılmış önemli bir türdür. Çevresel faktörlere karşı adaptasyon yeteneğinin yüksek olması dünya üzerinde yayılmasına imkân sağlamıştır. Bu sayede yarı kurak bölgelerde bile ekonomik anlamda üzüm yetiştiriciliği yapılabilmektedir. Asmanın kuraklığa karşı toleransının yüksek olmasının en önemli nedenlerinden bir tanesi bitki hidrolik iletkenlik ile ilgili mekanizmaları etkin kullanabilmesidir. Asmadaki hidrolik iletkenliğin temel düzenleyicisi ise akuaporinlerdir. Su kanal proteinleri olan akuaporinler, stomaların kapanmasından, emboli ve kavitasyondan kaçınmaya, köklerin topraktan daha kolay su almasını sağlamaya ve hücrelerdeki ozmotik dengeyi düzenlemeye kadar pek çok faaliyette görev almaktadırlar. Bu derlemede, asma bitkisinin kuraklık gibi abiyotik stres faktörlerine karşı hidrolik iletkenliğinin düzenlenmesinde önemli rol oynayan akuaporinlere odaklanılmıştır.

References

  • FAO, (2021). FAOSTAT İnternet Tarım İstatistikleri. www.fao.org (Erişim Tarihi: 05.11.2022)
  • Koç, M., (2022), “İklim Değişikliğinin Bağcılığa Etkisi ve Sürdürülebilirlik Açısından Adaptasyon Stratejileri”, Farklı Yaklaşımlarla Tarıma Yeniden Bakış, (291-308), Orient Yayınları.
  • Delrot, S., Picaud, S., & Gaudillere, J. P. (2001). Water transport and aquaporins in grapevine. In Molecular Biology & Biotechnology of the Grapevine (pp. 241-262). Dordrecht: Springer Netherlands.
  • Knepper, M. A., & Nielsen, S. (2004). Peter Agre, 2003 Nobel Prize winner in chemistry. Journal of the American Society of Nephrology, 15(4), 1093-1095.
  • Brown, D. (2017). The discovery of water channels (aquaporins). Annals of Nutrition and Metabolism, 70, 37-42.
  • Kaldenhoff, R., Kölling, A., & Richter, G. (1993). A novel blue light-and abscisic acid-inducible gene of Arabidopsis thaliana encoding an intrinsic membrane protein. Plant molecular biology, 23, 1187-1198.
  • Gustavsson, S., Lebrun, A. S., Nordén, K., Chaumont, F., & Johanson, U. (2005). A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels. Plant physiology, 139(1), 287-295.
  • Maurel, C., Boursiac, Y., Luu, D. T., Santoni, V., Shahzad, Z., & Verdoucq, L. (2015). Aquaporins in plants. Physiological reviews, 95(4), 1321-1358.
  • Fouquet, R., Léon, C., Ollat, N., & Barrieu, F. (2008). Identification of grapevine aquaporins and expression analysis in developing berries. Plant cell reports, 27, 1541-1550.
  • Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjövall, S., Fraysse, L., ... & Kjellbom, P. (2001). The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant physiology, 126(4), 1358-1369.
  • Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M. J., & Jung, R. (2001). Aquaporins constitute a large and highly divergent protein family in maize. Plant physiology, 125(3), 1206-1215.
  • Sakurai, J., Ishikawa, F., Yamaguchi, T., Uemura, M., & Maeshima, M. (2005). Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology, 46(9), 1568-1577.
  • Sabir, F., Zarrouk, O., Noronha, H., Loureiro-Dias, M. C., Soveral, G., Gerós, H., & Prista, C. (2021). Grapevine aquaporins: Diversity, cellular functions, and ecophysiological perspectives. Biochimie, 188, 61-76.
  • Shelden, M. C., Howitt, S. M., Kaiser, B. N., & Tyerman, S. D. (2009). Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Functional Plant Biology, 36(12), 1065-1078.
  • Shivaraj, S. M., Sharma, Y., Chaudhary, J., Rajora, N., Sharma, S., Thakral, V., ... & Deshmukh, R. (2021). Dynamic role of aquaporin transport system under drought stress in plants. Environmental and Experimental Botany, 184, 104367.
  • Fischer, M., & Kaldenhoff, R. (2008). On the pH regulation of plant aquaporins. Journal of Biological Chemistry, 283(49), 33889-33892.
  • Flexas, J., Ribas‐Carbó, M., Hanson, D. T., Bota, J., Otto, B., Cifre, J., ... & Kaldenhoff, R. (2006). Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. The Plant Journal, 48(3), 427-439.
  • Sade, N., Shatil-Cohen, A., Attia, Z., Maurel, C., Boursiac, Y., Kelly, G., ... & Moshelion, M. (2014). The role of plasma membrane aquaporins in regulating the bundle sheath-mesophyll continuum and leaf hydraulics. Plant Physiology, 166(3), 1609-1620.
  • Singh, R. K., Deshmukh, R., Muthamilarasan, M., Rani, R., & Prasad, M. (2020). Versatile roles of aquaporin in physiological processes and stress tolerance in plants. Plant Physiology and Biochemistry, 149, 178-189.
  • Mandlik, R., Singla, P., Kumawat, S., Khatri, P., Ansari, W., Singh, A., ... & Deshmukh, R. (2022). Understanding aquaporin regulation defining silicon uptake and role in arsenic, antimony and germanium stress in pigeonpea (Cajanus cajan). Environmental Pollution, 294, 118606.
  • Gautam, A., & Pandey, A. K. (2021). Aquaporins Responses under Challenging Environmental Conditions and Abiotic Stress Tolerance in Plants. The Botanical Review, 1-29.
  • Hussain, A., Tanveer, R., Mustafa, G., Farooq, M., Amin, I., & Mansoor, S. (2020). Comparative phylogenetic analysis of aquaporins provides insight into the gene family expansion and evolution in plants and their role in drought tolerant and susceptible chickpea cultivars. Genomics, 112(1), 263-275.
  • Wallace, I. S., Choi, W. G., & Roberts, D. M. (2006). The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758(8), 1165-1175.
  • Schnurbusch, T., Hayes, J., Hrmova, M., Baumann, U., Ramesh, S. A., Tyerman, S. D., ... & Sutton, T. (2010). Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2; 1. Plant Physiology, 153(4), 1706-1715.
  • Takano, J., Wada, M., Ludewig, U., Schaaf, G., von Wirén, N., & Fujiwara, T. (2006). The Arabidopsis major intrinsic protein NIP5; 1 is essential for efficient boron uptake and plant development under boron limitation. The Plant Cell, 18(6), 1498-1509.
  • Henzler, T., & Steudle, E. (2000). Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. Journal of Experimental Botany, 51(353), 2053-2066.
  • Kaldenhoff, R., & Fischer, M. (2006). Functional aquaporin diversity in plants. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758(8), 1134-1141.
  • Noronha, H., Agasse, A., Martins, A. P., Berny, M. C., Gomes, D., Zarrouk, O., ... & Gerós, H. (2014). The grape aquaporin VvSIP1 transports water across the ER membrane. Journal of Experimental Botany, 65(4), 981-993.
  • Lovisolo, C., Tramontini, S., Flexas, J., & Schubert, A. (2008). Mercurial inhibition of root hydraulic conductance in Vitis spp. rootstocks under water stress. Environmental and Experimental Botany, 63(1-3), 178-182
  • Steudle, E. (1994) The regulation of plant water at the cell, tissue, and organ level: role of active processes and of compartmentation. In: Flux control in biological systems. In: Elsevier, pp. 237–299.
  • Keller, M. (2020). The science of grapevines. Academic press.
  • Gambetta, G. A., Herrera, J. C., Dayer, S., Feng, Q., Hochberg, U., & Castellarin, S. D. (2020). The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. Journal of Experimental Botany, 71(16), 4658-4676.
  • Gambetta, G. A., Manuck, C. M., Drucker, S. T., Shaghasi, T., Fort, K., Matthews, M. A., ... & Mcelrone, A. J. (2012). The Relationship Between Root Hydraulics and Scion Vigour Across Vitis Rootstocks: What Role Do Root Aquaporins Play?. Journal of Experimental Botany, 63(18), 6445-6455.
  • Heinen, R. B., Ye, Q., & Chaumont, F. (2009). Role of Aquaporins in Leaf Physiology. Journal of Experimental Botany, 60(11), 2971-2985.
  • Vandeleur, R. K., Mayo, G., Shelden, M. C., Gilliham, M., Kaiser, B. N., & Tyerman, S. D., (2009). The Role of Plasma Membrane İntrinsic Protein Aquaporins in Water Transport Through Roots: Diurnal and Drought Stress Responses Reveal Different Strategies Between İsohydric and Anisohydric Cultivars of Grapevine. Plant Physiology, 149(1), 445–460. Https://Doi.Org/10.1104/Pp.108.128645.
  • Leitão, L., Prista, C., Moura, T. F., Loureiro-Dias, M. C., & Soveral, G. (2012). Grapevine Aquaporins: Gating of A Tonoplast İntrinsic Protein (TIP2; 1) By Cytosolic Ph. Plos One, 7(3).
  • Turgay, G., (2015). Asma'da (Vitis Vinifera L.) Aquaporin Genlerinin Biyoinformatik Analizi ve Farklı Dokularda İfade Profillerinin Belirlenmesi. Doktora Tezi. Ege Üniversitesi Fen Bilimleri Enstitüsü, 2015.
  • Shelden, M. C., Vandeleur, R., Kaiser, B. N., & Tyerman, S. D. (2017). A comparison of petiole hydraulics and aquaporin expression in an anisohydric and isohydric cultivar of grapevine in response to water-stress induced cavitation. Frontiers in Plant Science, 8, 1893.
  • Abdelhakam, S., Rabei, S. H., Nada, R. M., & Abogadallah, G. M. (2021). The complementary role of root and leaf PIP1 and PIP2 aquaporins drives the anisohydric behavior in Helianthus annuus L. Environmental and Experimental Botany, 182, 104314.
  • Pou, A., Medrano, H., Flexas, J., & Tyerman, S. D. (2013). A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re‐watering. Plant, cell & environment, 36(4), 828-843.
  • Šurbanovski, N., & Grant, O. M. (2014). The Emerging Role of Aquaporins in Plant Tolerance of Abiotic Stress. in Emerging Technologies and Management of Crop Stress Tolerance (Pp. 431-447). Academic Press
  • Hayes, M. A., Davies, C., & Dry, I. B. (2007). Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. Journal of experimental botany, 58(8), 1985-1997.
  • Galmés, J., Pou, A., Alsina, M. M., Tomàs, M., Medrano, H., & Flexas, J. (2007). Aquaporin Expression in Response to Different Water Stress İntensities and Recovery in Richter110 (Vitis Sp.): Relationship With Ecophysiological Status. Planta, 226(3), 671–681. Https://Doi.Org/10.1007/S00425-007-0515-1.
  • Baiges, I., & Scha, A. R. (2001). Eight Cdna Encoding Putative Aquaporins in Vitis Hybrid Richter-110 And Their Differential Expression. 52(362), 1949–1951.
  • Lovisolo, C., & Schubert, A. (2006). Mercury Hinders Recovery of Shoot Hydraulic Conductivity During Grapevine Rehydration: Evidence From A Whole-Plant Approach. New Phytologist, 172(3), 469–478. Https://Doi.Org/10.1111/J.14698137.2006.01852.X.
  • Kapilan, R., Vaziri, M., & Zwiazek, J. J. (2018). Regulation of aquaporins in plants under stress. Biological Research, 51(1), 1-11.
  • Domec, J. C., & Johnson, D. M. (2012). Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars?. Tree Physiology, 32(3), 245-248.
  • Dayer, S., Herrera, J. C., Dai, Z., Burlett, R., Lamarque, L. J., Delzon, S., ... & Gambetta, G. A. (2020). The sequence and thresholds of leaf hydraulic traits underlying grapevine varietal differences in drought tolerance. Journal of Experimental Botany, 71(14), 4333-4344.
  • Pei, H., Ma, N., Tian, J., Luo, J., Chen, J., Li, J., ... & Gao, J. (2013). An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiology, 163(2), 775-791.
  • Wan, X., Steudle, E., & Hartung, W. (2004). Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2. Journal of Experimental Botany, 55(396), 411-422.
  • Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N., & Maurel, C. (2015). Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. The Plant Cell, 27(7), 1945-1954.
  • Zarrouk, O., Garcia-Tejero, I., Pinto, C., Genebra, T., Sabir, F., Prista, C., ... & Chave, M. M., (2016). Aquaporins İsoforms in cv. Touriga Nacional Grapevine Under Water Stress and Recovery—Regulation of Expression in Leaves and Roots. Agricultural Water Management, 164, 167-175.
  • Schley, T. R., Franco, D. M., Junior, J. P. A., de Godoy Maia, I., Habermann, G., & de Almeida, L. F. R. (2022). TIP1; 1 expression could modulate the recovery of stomatal opening during rehydration in Sorghum bicolor. Environmental and Experimental Botany, 104908.
  • Li, G., Santoni, V., & Maurel, C. (2014). Plant aquaporins: roles in plant physiology. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(5), 1574-1582.

Grapevine Hydraulic Conductivity: Aquaporins

Year 2024, Volume: 5 Issue: 1, 1 - 10, 30.06.2024
https://doi.org/10.58728/joinabt.1414866

Abstract

Grapevine, initially cultivated in the Anatolian and Transcaucasian regions, has become an important species spread from China to America, from Australia to South Africa, and across Mediterranean countries today. Its high adaptability to environmental factors has facilitated its worldwide dissemination. Consequently, even in semi-arid regions, economic grape cultivation is feasible. One of the main reasons for grapevine's high tolerance to drought is its effective utilization of plant hydraulic conductivity mechanisms. The primary regulators of hydraulic conductivity in grapevines are aquaporins. Aquaporins, which are water channel proteins, are involved in various activities ranging from the closure of stomata to avoiding embolism and cavitation, facilitating easier water uptake by roots from the soil, and regulating osmotic balance within cells. This review focuses on aquaporins, which play a significant role in regulating hydraulic conductivity in grapevines against abiotic stress factors such as drought.

References

  • FAO, (2021). FAOSTAT İnternet Tarım İstatistikleri. www.fao.org (Erişim Tarihi: 05.11.2022)
  • Koç, M., (2022), “İklim Değişikliğinin Bağcılığa Etkisi ve Sürdürülebilirlik Açısından Adaptasyon Stratejileri”, Farklı Yaklaşımlarla Tarıma Yeniden Bakış, (291-308), Orient Yayınları.
  • Delrot, S., Picaud, S., & Gaudillere, J. P. (2001). Water transport and aquaporins in grapevine. In Molecular Biology & Biotechnology of the Grapevine (pp. 241-262). Dordrecht: Springer Netherlands.
  • Knepper, M. A., & Nielsen, S. (2004). Peter Agre, 2003 Nobel Prize winner in chemistry. Journal of the American Society of Nephrology, 15(4), 1093-1095.
  • Brown, D. (2017). The discovery of water channels (aquaporins). Annals of Nutrition and Metabolism, 70, 37-42.
  • Kaldenhoff, R., Kölling, A., & Richter, G. (1993). A novel blue light-and abscisic acid-inducible gene of Arabidopsis thaliana encoding an intrinsic membrane protein. Plant molecular biology, 23, 1187-1198.
  • Gustavsson, S., Lebrun, A. S., Nordén, K., Chaumont, F., & Johanson, U. (2005). A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels. Plant physiology, 139(1), 287-295.
  • Maurel, C., Boursiac, Y., Luu, D. T., Santoni, V., Shahzad, Z., & Verdoucq, L. (2015). Aquaporins in plants. Physiological reviews, 95(4), 1321-1358.
  • Fouquet, R., Léon, C., Ollat, N., & Barrieu, F. (2008). Identification of grapevine aquaporins and expression analysis in developing berries. Plant cell reports, 27, 1541-1550.
  • Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjövall, S., Fraysse, L., ... & Kjellbom, P. (2001). The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant physiology, 126(4), 1358-1369.
  • Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M. J., & Jung, R. (2001). Aquaporins constitute a large and highly divergent protein family in maize. Plant physiology, 125(3), 1206-1215.
  • Sakurai, J., Ishikawa, F., Yamaguchi, T., Uemura, M., & Maeshima, M. (2005). Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology, 46(9), 1568-1577.
  • Sabir, F., Zarrouk, O., Noronha, H., Loureiro-Dias, M. C., Soveral, G., Gerós, H., & Prista, C. (2021). Grapevine aquaporins: Diversity, cellular functions, and ecophysiological perspectives. Biochimie, 188, 61-76.
  • Shelden, M. C., Howitt, S. M., Kaiser, B. N., & Tyerman, S. D. (2009). Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Functional Plant Biology, 36(12), 1065-1078.
  • Shivaraj, S. M., Sharma, Y., Chaudhary, J., Rajora, N., Sharma, S., Thakral, V., ... & Deshmukh, R. (2021). Dynamic role of aquaporin transport system under drought stress in plants. Environmental and Experimental Botany, 184, 104367.
  • Fischer, M., & Kaldenhoff, R. (2008). On the pH regulation of plant aquaporins. Journal of Biological Chemistry, 283(49), 33889-33892.
  • Flexas, J., Ribas‐Carbó, M., Hanson, D. T., Bota, J., Otto, B., Cifre, J., ... & Kaldenhoff, R. (2006). Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. The Plant Journal, 48(3), 427-439.
  • Sade, N., Shatil-Cohen, A., Attia, Z., Maurel, C., Boursiac, Y., Kelly, G., ... & Moshelion, M. (2014). The role of plasma membrane aquaporins in regulating the bundle sheath-mesophyll continuum and leaf hydraulics. Plant Physiology, 166(3), 1609-1620.
  • Singh, R. K., Deshmukh, R., Muthamilarasan, M., Rani, R., & Prasad, M. (2020). Versatile roles of aquaporin in physiological processes and stress tolerance in plants. Plant Physiology and Biochemistry, 149, 178-189.
  • Mandlik, R., Singla, P., Kumawat, S., Khatri, P., Ansari, W., Singh, A., ... & Deshmukh, R. (2022). Understanding aquaporin regulation defining silicon uptake and role in arsenic, antimony and germanium stress in pigeonpea (Cajanus cajan). Environmental Pollution, 294, 118606.
  • Gautam, A., & Pandey, A. K. (2021). Aquaporins Responses under Challenging Environmental Conditions and Abiotic Stress Tolerance in Plants. The Botanical Review, 1-29.
  • Hussain, A., Tanveer, R., Mustafa, G., Farooq, M., Amin, I., & Mansoor, S. (2020). Comparative phylogenetic analysis of aquaporins provides insight into the gene family expansion and evolution in plants and their role in drought tolerant and susceptible chickpea cultivars. Genomics, 112(1), 263-275.
  • Wallace, I. S., Choi, W. G., & Roberts, D. M. (2006). The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758(8), 1165-1175.
  • Schnurbusch, T., Hayes, J., Hrmova, M., Baumann, U., Ramesh, S. A., Tyerman, S. D., ... & Sutton, T. (2010). Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2; 1. Plant Physiology, 153(4), 1706-1715.
  • Takano, J., Wada, M., Ludewig, U., Schaaf, G., von Wirén, N., & Fujiwara, T. (2006). The Arabidopsis major intrinsic protein NIP5; 1 is essential for efficient boron uptake and plant development under boron limitation. The Plant Cell, 18(6), 1498-1509.
  • Henzler, T., & Steudle, E. (2000). Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. Journal of Experimental Botany, 51(353), 2053-2066.
  • Kaldenhoff, R., & Fischer, M. (2006). Functional aquaporin diversity in plants. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758(8), 1134-1141.
  • Noronha, H., Agasse, A., Martins, A. P., Berny, M. C., Gomes, D., Zarrouk, O., ... & Gerós, H. (2014). The grape aquaporin VvSIP1 transports water across the ER membrane. Journal of Experimental Botany, 65(4), 981-993.
  • Lovisolo, C., Tramontini, S., Flexas, J., & Schubert, A. (2008). Mercurial inhibition of root hydraulic conductance in Vitis spp. rootstocks under water stress. Environmental and Experimental Botany, 63(1-3), 178-182
  • Steudle, E. (1994) The regulation of plant water at the cell, tissue, and organ level: role of active processes and of compartmentation. In: Flux control in biological systems. In: Elsevier, pp. 237–299.
  • Keller, M. (2020). The science of grapevines. Academic press.
  • Gambetta, G. A., Herrera, J. C., Dayer, S., Feng, Q., Hochberg, U., & Castellarin, S. D. (2020). The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. Journal of Experimental Botany, 71(16), 4658-4676.
  • Gambetta, G. A., Manuck, C. M., Drucker, S. T., Shaghasi, T., Fort, K., Matthews, M. A., ... & Mcelrone, A. J. (2012). The Relationship Between Root Hydraulics and Scion Vigour Across Vitis Rootstocks: What Role Do Root Aquaporins Play?. Journal of Experimental Botany, 63(18), 6445-6455.
  • Heinen, R. B., Ye, Q., & Chaumont, F. (2009). Role of Aquaporins in Leaf Physiology. Journal of Experimental Botany, 60(11), 2971-2985.
  • Vandeleur, R. K., Mayo, G., Shelden, M. C., Gilliham, M., Kaiser, B. N., & Tyerman, S. D., (2009). The Role of Plasma Membrane İntrinsic Protein Aquaporins in Water Transport Through Roots: Diurnal and Drought Stress Responses Reveal Different Strategies Between İsohydric and Anisohydric Cultivars of Grapevine. Plant Physiology, 149(1), 445–460. Https://Doi.Org/10.1104/Pp.108.128645.
  • Leitão, L., Prista, C., Moura, T. F., Loureiro-Dias, M. C., & Soveral, G. (2012). Grapevine Aquaporins: Gating of A Tonoplast İntrinsic Protein (TIP2; 1) By Cytosolic Ph. Plos One, 7(3).
  • Turgay, G., (2015). Asma'da (Vitis Vinifera L.) Aquaporin Genlerinin Biyoinformatik Analizi ve Farklı Dokularda İfade Profillerinin Belirlenmesi. Doktora Tezi. Ege Üniversitesi Fen Bilimleri Enstitüsü, 2015.
  • Shelden, M. C., Vandeleur, R., Kaiser, B. N., & Tyerman, S. D. (2017). A comparison of petiole hydraulics and aquaporin expression in an anisohydric and isohydric cultivar of grapevine in response to water-stress induced cavitation. Frontiers in Plant Science, 8, 1893.
  • Abdelhakam, S., Rabei, S. H., Nada, R. M., & Abogadallah, G. M. (2021). The complementary role of root and leaf PIP1 and PIP2 aquaporins drives the anisohydric behavior in Helianthus annuus L. Environmental and Experimental Botany, 182, 104314.
  • Pou, A., Medrano, H., Flexas, J., & Tyerman, S. D. (2013). A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re‐watering. Plant, cell & environment, 36(4), 828-843.
  • Šurbanovski, N., & Grant, O. M. (2014). The Emerging Role of Aquaporins in Plant Tolerance of Abiotic Stress. in Emerging Technologies and Management of Crop Stress Tolerance (Pp. 431-447). Academic Press
  • Hayes, M. A., Davies, C., & Dry, I. B. (2007). Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. Journal of experimental botany, 58(8), 1985-1997.
  • Galmés, J., Pou, A., Alsina, M. M., Tomàs, M., Medrano, H., & Flexas, J. (2007). Aquaporin Expression in Response to Different Water Stress İntensities and Recovery in Richter110 (Vitis Sp.): Relationship With Ecophysiological Status. Planta, 226(3), 671–681. Https://Doi.Org/10.1007/S00425-007-0515-1.
  • Baiges, I., & Scha, A. R. (2001). Eight Cdna Encoding Putative Aquaporins in Vitis Hybrid Richter-110 And Their Differential Expression. 52(362), 1949–1951.
  • Lovisolo, C., & Schubert, A. (2006). Mercury Hinders Recovery of Shoot Hydraulic Conductivity During Grapevine Rehydration: Evidence From A Whole-Plant Approach. New Phytologist, 172(3), 469–478. Https://Doi.Org/10.1111/J.14698137.2006.01852.X.
  • Kapilan, R., Vaziri, M., & Zwiazek, J. J. (2018). Regulation of aquaporins in plants under stress. Biological Research, 51(1), 1-11.
  • Domec, J. C., & Johnson, D. M. (2012). Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars?. Tree Physiology, 32(3), 245-248.
  • Dayer, S., Herrera, J. C., Dai, Z., Burlett, R., Lamarque, L. J., Delzon, S., ... & Gambetta, G. A. (2020). The sequence and thresholds of leaf hydraulic traits underlying grapevine varietal differences in drought tolerance. Journal of Experimental Botany, 71(14), 4333-4344.
  • Pei, H., Ma, N., Tian, J., Luo, J., Chen, J., Li, J., ... & Gao, J. (2013). An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiology, 163(2), 775-791.
  • Wan, X., Steudle, E., & Hartung, W. (2004). Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2. Journal of Experimental Botany, 55(396), 411-422.
  • Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N., & Maurel, C. (2015). Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. The Plant Cell, 27(7), 1945-1954.
  • Zarrouk, O., Garcia-Tejero, I., Pinto, C., Genebra, T., Sabir, F., Prista, C., ... & Chave, M. M., (2016). Aquaporins İsoforms in cv. Touriga Nacional Grapevine Under Water Stress and Recovery—Regulation of Expression in Leaves and Roots. Agricultural Water Management, 164, 167-175.
  • Schley, T. R., Franco, D. M., Junior, J. P. A., de Godoy Maia, I., Habermann, G., & de Almeida, L. F. R. (2022). TIP1; 1 expression could modulate the recovery of stomatal opening during rehydration in Sorghum bicolor. Environmental and Experimental Botany, 104908.
  • Li, G., Santoni, V., & Maurel, C. (2014). Plant aquaporins: roles in plant physiology. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(5), 1574-1582.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Oenology and Viticulture
Journal Section Reviews
Authors

Mehmet Koç 0000-0001-5922-5026

Alev Yılmaz 0000-0002-3166-0349

Muhittin Kulak 0000-0003-3673-9221

Ümit Haydar Erol 0000-0001-6126-5844

Early Pub Date June 30, 2024
Publication Date June 30, 2024
Submission Date January 4, 2024
Acceptance Date March 18, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Koç, M., Yılmaz, A., Kulak, M., Erol, Ü. H. (2024). Asma Hidrolik İletkenliği: Akuaporinler. Journal of Agricultural Biotechnology, 5(1), 1-10. https://doi.org/10.58728/joinabt.1414866