Research Article
BibTex RIS Cite
Year 2025, Volume: 8 Issue: 1, 28 - 44, 22.06.2025

Abstract

References

  • O. Ginsburg et al., “Breast cancer early detection: A phased approach to implementation,” Cancer, vol. 126, no. S10, pp. 2379–2393, 2020, doi: 10.1002/CNCR.32887.
  • Emily Grumbling and Mark Horowitz, “Quantum Computing: Progress and Prospects.” Accessed: Oct. 04, 2024. [Online]. Available: https://books.google.com.tr/books?hl=en&lr=&id=jjiPDwAAQBAJ&oi=fnd&pg=PR1&dq=Quantum+computers+leverage+the+principles+of+quantum+mechanics+to+perform+computations+that+differ+fundamentally+from+classical+computers.+Unlike+classical+bits,+which+represent+information+as+either+0+or+1,+quantum+bits+(qubits)+can+exist+in+superpositions+of+both+0+and+1+simultaneously,+enabling+quantum+computers+to+process+complex+calculations+more+efficiently.+&ots=flQcusQuaB&sig=qlo2lGDgkp5ScptYZ6lhIRReUZw&redir_esc=y#v=onepage&q&f=false
  • J. D. Martín-Guerrero and L. Lamata, “Quantum Machine Learning: A tutorial,” Neurocomputing, vol. 470, pp. 457–461, Jan. 2022, doi: 10.1016/J.NEUCOM.2021.02.102.
  • P. Date, C. Schuman, R. Patton, and T. Potok, “A Classical-Quantum Hybrid Approach for Unsupervised Probabilistic Machine Learning,” Lecture Notes in Networks and Systems, vol. 70, pp. 98–117, 2020, doi: 10.1007/978-3-030-12385-7_9.
  • S. B. Ramezani, A. Sommers, H. K. Manchukonda, S. Rahimi, and A. Amirlatifi, “Machine Learning Algorithms in Quantum Computing: A Survey,” Proceedings of the International Joint Conference on Neural Networks, Jul. 2020, doi: 10.1109/IJCNN48605.2020.9207714.
  • H. Kwon, H. Lee, and J. Bae, “Feature Map for Quantum Data in Classification,” 2024 International Conference on Quantum Communications, Networking, and Computing (QCNC), pp. 41–48, Jul. 2024, doi: 10.1109/QCNC62729.2024.00016.
  • J. Maroco, D. Silva, A. Rodrigues, M. Guerreiro, I. Santana, and A. De Mendonça, “Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests,” BMC Res Notes, vol. 4, no. 1, pp. 1–14, Aug. 2011, doi: 10.1186/1756-0500-4-299/FIGURES/8.
  • H. Kwon, H. Lee, and J. Bae, “Feature Map for Quantum Data in Classification,” Proceedings - 2024 International Conference on Quantum Communications, Networking, and Computing, QCNC 2024, pp. 41–48, 2024, doi: 10.1109/QCNC62729.2024.00016.
  • J. B. Prajapati, H. Paliwal, B. G. Prajapati, S. Saikia, and R. Pandey, “Quantum Machine Learning in Prediction of Breast Cancer,” Studies in Computational Intelligence, vol. 1085, pp. 351–382, 2023, doi: 10.1007/978-981-19-9530-9_19.
  • H. Wang, “A novel feature selection method based on quantum support vector machine,” Phys Scr, vol. 99, no. 5, p. 056006, Apr. 2024, doi: 10.1088/1402-4896/AD36EF.
  • H. Patel, S. Kamthekar, D. Prajapati, and R. Agarwal, “Quantum Inspired Image Classification: A Hybrid SVM Framework,” 2024 International Conference on Emerging Smart Computing and Informatics, ESCI 2024, 2024, doi: 10.1109/ESCI59607.2024.10497230.
  • P. Patil, M. Sharma, R. Rewatkar, and B. Fulkar, “Detecting Breast Cancer: A Comparative Study of Various Machine Learning Models,” 2024 Parul International Conference on Engineering and Technology, PICET 2024, 2024, doi: 10.1109/PICET60765.2024.10716141.
  • J. A. M. Sidey-Gibbons and C. J. Sidey-Gibbons, “Machine learning in medicine: a practical introduction,” BMC Med Res Methodol, vol. 19, no. 1, pp. 1–18, Mar. 2019, doi: 10.1186/S12874-019-0681-4/TABLES/5.
  • A. Sharma, S. Kulshrestha, and S. B Daniel, “Machine Learning Approaches for Cancer Detection,” International Journal of Engineering and Manufacturing, vol. 8, no. 2, pp. 45–55, Mar. 2018, doi: 10.5815/IJEM.2018.02.05.
  • “Cirq | Google Quantum AI.” Accessed: Sep. 06, 2024. [Online]. Available: https://quantumai.google/cirq
  • C. P. Williams, “Quantum Gates,” pp. 51–122, 2011, doi: 10.1007/978-1-84628-887-6_2.
  • “colab.google.” Accessed: Oct. 04, 2024. [Online]. Available: https://colab.google/
  • “NumPy -.” Accessed: Oct. 04, 2024. [Online]. Available: https://numpy.org/
  • “Matplotlib — Visualization with Python.” Accessed: Oct. 04, 2024. [Online]. Available: https://matplotlib.org/
  • “load_breast_cancer — scikit-learn 1.5.1 documentation.” Accessed: Sep. 06, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
  • “Breast Cancer Wisconsin (Diagnostic) - UCI Machine Learning Repository.” Accessed: Feb. 01, 2025. [Online]. Available: https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
  • A. A. A. Aayush, J. Sundaram, S. Devaraju, S. Jayaprakash, H. Anandaram, and C. Manivasagan, “Diabetic disease prediction using machine learning models and algorithms for early classification and diagnosis assessment,” Machine Learning and Deep Learning Techniques for Medical Image Recognition, pp. 217–244, Dec. 2023, doi: 10.1201/9781003366249-13/DIABETIC-DISEASE-PREDICTION-USING-MACHINE-LEARNING-MODELS-ALGORITHMS-EARLY-CLASSIFICATION-DIAGNOSIS-ASSESSMENT-AAYUSH-JAWAHAR-SUNDARAM-DEVARAJU-SUJITH-JAYAPRAKASH-HARISHCHANDER-ANANDARAM-MANIVASAGAN.
  • S. Raschka, “Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning,” Nov. 2018, Accessed: Feb. 01, 2025. [Online]. Available: https://arxiv.org/abs/1811.12808v3
  • “SVC — scikit-learn 1.5.1 documentation.” Accessed: Sep. 06, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
  • “DecisionTreeClassifier — scikit-learn 1.5.1 documentation.” Accessed: Sep. 06, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
  • “RandomForestClassifier — scikit-learn 1.5.1 documentation.” Accessed: Sep. 06, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
  • “LogisticRegression — scikit-learn 1.5.1 documentation.” Accessed: Sep. 06, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
  • D. J. Shepherd, “On the role of Hadamard Gates in quantum circuits,” Quantum Inf Process, vol. 5, no. 3, pp. 161–177, Jun. 2006, doi: 10.1007/S11128-006-0023-4/METRICS.
  • D. M. Zajac et al., “Resonantly driven CNOT gate for electron spins,” Science (1979), vol. 359, no. 6374, pp. 439–442, Jan. 2018, doi: 10.1126/SCIENCE.AAO5965/SUPPL_FILE/AAO5965_ZAJAC_SM.PDF.
  • R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev Mod Phys, vol. 81, no. 2, pp. 865–942, Jun. 2009, doi: 10.1103/REVMODPHYS.81.865/FIGURES/3/MEDIUM.
  • J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, “Quantum superposition of distinct macroscopic states,” Nature 2000 406:6791, vol. 406, no. 6791, pp. 43–46, Jul. 2000, doi: 10.1038/35017505.
  • “Quantum Feature Map — PennyLane.” Accessed: Sep. 06, 2024. [Online]. Available: https://pennylane.ai/qml/glossary/quantum_feature_map/
  • M. Yin, J. W. Vaughan, and H. Wallach, “Understanding the effect of accuracy on trust in machine learning models,” Conference on Human Factors in Computing Systems - Proceedings, May 2019, doi: 10.1145/3290605.3300509.

Feature Selection Using Quantum Feature Maps: Performance Analysis of Classical and Quantum Models on the Breast Cancer Dataset

Year 2025, Volume: 8 Issue: 1, 28 - 44, 22.06.2025

Abstract

In this study, the performance of classical and quantum machine learning models was compared using the Breast Cancer dataset, which consists of diagnostic data aimed at classifying breast tumor types. Breast cancer, being one of the most common and life-threatening cancers in women, requires accurate diagnostic tools for early detection and effective treatment. The primary objective of this study is to evaluate the accuracy of quantum-assisted models through quantum feature selection methods. Initially, classical machine learning algorithms such as Support Vector Machines (SVM), Decision Trees, Random Forests, and Logistic Regression were applied to the dataset for baseline analysis. Subsequently, a quantum feature map was constructed using the Cirq library, enabling feature transformation based on this map. The classification was performed using the SVM model with the quantum-transformed features. The Logistic Regression and SVM models demonstrated the highest performance among classical machine learning models, achieving an accuracy rate of 96.49%, followed by Random Forest at 94.74% and Decision Tree at 92.11%. In the context of quantum feature transformation, the model utilizing the top five selected features achieved an accuracy rate of 94.74%, in contrast to 98.25% for the model trained with all features. These findings underscore the potential of quantum feature maps in enhancing model performance compared to classical techniques. The results suggest that quantum computing may offer significant advantages when integrated into machine learning frameworks, particularly in domains such as medical diagnostics, where high accuracy is crucial.

References

  • O. Ginsburg et al., “Breast cancer early detection: A phased approach to implementation,” Cancer, vol. 126, no. S10, pp. 2379–2393, 2020, doi: 10.1002/CNCR.32887.
  • Emily Grumbling and Mark Horowitz, “Quantum Computing: Progress and Prospects.” Accessed: Oct. 04, 2024. [Online]. Available: https://books.google.com.tr/books?hl=en&lr=&id=jjiPDwAAQBAJ&oi=fnd&pg=PR1&dq=Quantum+computers+leverage+the+principles+of+quantum+mechanics+to+perform+computations+that+differ+fundamentally+from+classical+computers.+Unlike+classical+bits,+which+represent+information+as+either+0+or+1,+quantum+bits+(qubits)+can+exist+in+superpositions+of+both+0+and+1+simultaneously,+enabling+quantum+computers+to+process+complex+calculations+more+efficiently.+&ots=flQcusQuaB&sig=qlo2lGDgkp5ScptYZ6lhIRReUZw&redir_esc=y#v=onepage&q&f=false
  • J. D. Martín-Guerrero and L. Lamata, “Quantum Machine Learning: A tutorial,” Neurocomputing, vol. 470, pp. 457–461, Jan. 2022, doi: 10.1016/J.NEUCOM.2021.02.102.
  • P. Date, C. Schuman, R. Patton, and T. Potok, “A Classical-Quantum Hybrid Approach for Unsupervised Probabilistic Machine Learning,” Lecture Notes in Networks and Systems, vol. 70, pp. 98–117, 2020, doi: 10.1007/978-3-030-12385-7_9.
  • S. B. Ramezani, A. Sommers, H. K. Manchukonda, S. Rahimi, and A. Amirlatifi, “Machine Learning Algorithms in Quantum Computing: A Survey,” Proceedings of the International Joint Conference on Neural Networks, Jul. 2020, doi: 10.1109/IJCNN48605.2020.9207714.
  • H. Kwon, H. Lee, and J. Bae, “Feature Map for Quantum Data in Classification,” 2024 International Conference on Quantum Communications, Networking, and Computing (QCNC), pp. 41–48, Jul. 2024, doi: 10.1109/QCNC62729.2024.00016.
  • J. Maroco, D. Silva, A. Rodrigues, M. Guerreiro, I. Santana, and A. De Mendonça, “Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests,” BMC Res Notes, vol. 4, no. 1, pp. 1–14, Aug. 2011, doi: 10.1186/1756-0500-4-299/FIGURES/8.
  • H. Kwon, H. Lee, and J. Bae, “Feature Map for Quantum Data in Classification,” Proceedings - 2024 International Conference on Quantum Communications, Networking, and Computing, QCNC 2024, pp. 41–48, 2024, doi: 10.1109/QCNC62729.2024.00016.
  • J. B. Prajapati, H. Paliwal, B. G. Prajapati, S. Saikia, and R. Pandey, “Quantum Machine Learning in Prediction of Breast Cancer,” Studies in Computational Intelligence, vol. 1085, pp. 351–382, 2023, doi: 10.1007/978-981-19-9530-9_19.
  • H. Wang, “A novel feature selection method based on quantum support vector machine,” Phys Scr, vol. 99, no. 5, p. 056006, Apr. 2024, doi: 10.1088/1402-4896/AD36EF.
  • H. Patel, S. Kamthekar, D. Prajapati, and R. Agarwal, “Quantum Inspired Image Classification: A Hybrid SVM Framework,” 2024 International Conference on Emerging Smart Computing and Informatics, ESCI 2024, 2024, doi: 10.1109/ESCI59607.2024.10497230.
  • P. Patil, M. Sharma, R. Rewatkar, and B. Fulkar, “Detecting Breast Cancer: A Comparative Study of Various Machine Learning Models,” 2024 Parul International Conference on Engineering and Technology, PICET 2024, 2024, doi: 10.1109/PICET60765.2024.10716141.
  • J. A. M. Sidey-Gibbons and C. J. Sidey-Gibbons, “Machine learning in medicine: a practical introduction,” BMC Med Res Methodol, vol. 19, no. 1, pp. 1–18, Mar. 2019, doi: 10.1186/S12874-019-0681-4/TABLES/5.
  • A. Sharma, S. Kulshrestha, and S. B Daniel, “Machine Learning Approaches for Cancer Detection,” International Journal of Engineering and Manufacturing, vol. 8, no. 2, pp. 45–55, Mar. 2018, doi: 10.5815/IJEM.2018.02.05.
  • “Cirq | Google Quantum AI.” Accessed: Sep. 06, 2024. [Online]. Available: https://quantumai.google/cirq
  • C. P. Williams, “Quantum Gates,” pp. 51–122, 2011, doi: 10.1007/978-1-84628-887-6_2.
  • “colab.google.” Accessed: Oct. 04, 2024. [Online]. Available: https://colab.google/
  • “NumPy -.” Accessed: Oct. 04, 2024. [Online]. Available: https://numpy.org/
  • “Matplotlib — Visualization with Python.” Accessed: Oct. 04, 2024. [Online]. Available: https://matplotlib.org/
  • “load_breast_cancer — scikit-learn 1.5.1 documentation.” Accessed: Sep. 06, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
  • “Breast Cancer Wisconsin (Diagnostic) - UCI Machine Learning Repository.” Accessed: Feb. 01, 2025. [Online]. Available: https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
  • A. A. A. Aayush, J. Sundaram, S. Devaraju, S. Jayaprakash, H. Anandaram, and C. Manivasagan, “Diabetic disease prediction using machine learning models and algorithms for early classification and diagnosis assessment,” Machine Learning and Deep Learning Techniques for Medical Image Recognition, pp. 217–244, Dec. 2023, doi: 10.1201/9781003366249-13/DIABETIC-DISEASE-PREDICTION-USING-MACHINE-LEARNING-MODELS-ALGORITHMS-EARLY-CLASSIFICATION-DIAGNOSIS-ASSESSMENT-AAYUSH-JAWAHAR-SUNDARAM-DEVARAJU-SUJITH-JAYAPRAKASH-HARISHCHANDER-ANANDARAM-MANIVASAGAN.
  • S. Raschka, “Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning,” Nov. 2018, Accessed: Feb. 01, 2025. [Online]. Available: https://arxiv.org/abs/1811.12808v3
  • “SVC — scikit-learn 1.5.1 documentation.” Accessed: Sep. 06, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
  • “DecisionTreeClassifier — scikit-learn 1.5.1 documentation.” Accessed: Sep. 06, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
  • “RandomForestClassifier — scikit-learn 1.5.1 documentation.” Accessed: Sep. 06, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
  • “LogisticRegression — scikit-learn 1.5.1 documentation.” Accessed: Sep. 06, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
  • D. J. Shepherd, “On the role of Hadamard Gates in quantum circuits,” Quantum Inf Process, vol. 5, no. 3, pp. 161–177, Jun. 2006, doi: 10.1007/S11128-006-0023-4/METRICS.
  • D. M. Zajac et al., “Resonantly driven CNOT gate for electron spins,” Science (1979), vol. 359, no. 6374, pp. 439–442, Jan. 2018, doi: 10.1126/SCIENCE.AAO5965/SUPPL_FILE/AAO5965_ZAJAC_SM.PDF.
  • R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev Mod Phys, vol. 81, no. 2, pp. 865–942, Jun. 2009, doi: 10.1103/REVMODPHYS.81.865/FIGURES/3/MEDIUM.
  • J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, “Quantum superposition of distinct macroscopic states,” Nature 2000 406:6791, vol. 406, no. 6791, pp. 43–46, Jul. 2000, doi: 10.1038/35017505.
  • “Quantum Feature Map — PennyLane.” Accessed: Sep. 06, 2024. [Online]. Available: https://pennylane.ai/qml/glossary/quantum_feature_map/
  • M. Yin, J. W. Vaughan, and H. Wallach, “Understanding the effect of accuracy on trust in machine learning models,” Conference on Human Factors in Computing Systems - Proceedings, May 2019, doi: 10.1145/3290605.3300509.
There are 33 citations in total.

Details

Primary Language English
Subjects Machine Learning Algorithms, Artificial Intelligence (Other)
Journal Section Research Article
Authors

Sevdanur Genç 0000-0003-4774-9265

Early Pub Date May 20, 2025
Publication Date June 22, 2025
Submission Date October 12, 2024
Acceptance Date February 5, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

IEEE S. Genç, “Feature Selection Using Quantum Feature Maps: Performance Analysis of Classical and Quantum Models on the Breast Cancer Dataset”, International Journal of Data Science and Applications, vol. 8, no. 1, pp. 28–44, 2025.

AI Research and Application Center, Sakarya University of Applied Sciences, Sakarya, Türkiye.