Research Article
BibTex RIS Cite

Karayolları alttemel ve temel tabakalarının Abaqus programı ile modellemesi

Year 2025, Volume: 5 Issue: 1, 61 - 75, 25.06.2025
https://doi.org/10.58771/joinmet.1695267

Abstract

Karayolları, trafik hacmi, çevresel koşullar ve dayanıklılık gibi faktörlere uygun şekilde tasarlanması gereken, şehirleri ve bölgeleri birbirine bağlayan önemli ulaşım altyapılarıdır. Karayollarının fiziksel yapısı; üstyapı, temel ve alt temel katmanları ile toprak zemin tabakasından oluşmaktadır. Bu katmanların her biri, trafik yüklerini desteklemek, dağıtmak ve uzun ömürlü bir yol performansı sağlamak amacıyla dikkatle tasarlanmaktadır. Alt temel ve temel katmanları, yol yapısının stabilitesini artırmak ve trafik yüklerinin zemine eşit şekilde dağılmasını sağlamak için özel olarak tasarlanmaktadır. Bu katmanların kalitesi, yolun uzun ömürlü ve düşük bakım gerektiren bir yapıya sahip olmasında belirleyicidir. Karayollarının tasarımı ve inşasında kullanılan malzemeler ve mühendislik teknikleri hem maliyet hem de sürdürülebilirlik açısından optimize edilmelidir. Bu optimizasyonların ne tür etkileri olacağını deneyebilmek ve çeşitli varyasyonları görebilmek adına sonlu elemanlar yöntemi kullanılarak alternatif zemin koşullarını Simulia Abaqus/CAE programı kullanılarak tasarlanan modelden geliştirilmesi hedeflenmiştir. Karayollarında bulunan katmanlara yüklenmiş dairesel yüklemenin neden olduğu gerilmenin, katmanlara olan etkileri örnek bir model seçilmiş ve üzerinde gösterilmiştir.

References

  • Ahmed, A., Khan, R., & Al-Nageim, H. (2019). Performance evaluation of stabilized subbase layers using FEM modeling. Construction and Building Materials, 223, 122–130. https://doi.org/10.1016/j.conbuildmat.2019.06.038
  • American Association of State Highway and Transportation Officials. (1993). AASHTO guide for design of pavement structures. Washington, D.C.: AASHTO.
  • American Association of State Highway and Transportation Officials. (2012). AASHTO guide for design of pavement structures. Washington, D.C.: AASHTO.
  • Barksdale, R. D., & Itani, S. Y. (1989). Influence of aggregate shape on base behavior. Transportation Research Record.
  • Bisht, A., Ghosh, P., & Dey, A. (2016). Modeling viscoelastic behavior of bituminous materials using Abaqus. Construction and Building Materials, 121, 244–251. https://doi.org/10.1016/j.conbuildmat.2016.05.114
  • Boussinesq, J. (1885). Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques. Paris: Gauthier-Villars.
  • Bowles, J. E. (1997). Foundation analysis and design (5th ed.). New York, NY: McGraw-Hill.
  • Budhu, M. (2010). Soil mechanics and foundations (2nd ed.). Hoboken, NJ: John Wiley & Sons.
  • Coduto, D. P. (2010). Foundation design: Principles and practices (2nd ed.). Boston, MA: Pearson.
  • Craig, R. F. (2004). Craig’s soil mechanics (7th ed.). London: Spon Press.
  • Dassault Systèmes. (2021). ABAQUS documentation. Providence, RI: Dassault Systèmes.
  • Das, B. M. (2010). Principles of geotechnical engineering (7th ed.). Stamford, CT: Cengage Learning.
  • Ding, Y., Yang, J., & Yu, H. S. (2013). Modeling behavior of subgrade soils subjected to cyclic loading. International Journal of Geomechanics, 13(6), 823–831. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000273
  • Federal Highway Administration. (2023). Highway functional classification: Concepts, criteria and procedures. U.S. Department of Transportation.
  • Ghafoori, N., Asadi, S., & Darvishan, E. (2020). Three-dimensional finite element modeling of geogrid-reinforced pavements under cyclic loading. Geotextiles and Geomembranes, 48(5), 567–577. https://doi.org/10.1016/j.geotexmem.2020.02.005
  • Helwany, S. (2007). Applied soil mechanics with Abaqus applications. Hoboken, NJ: Wiley.
  • Hibbit, Karlsson & Sorensen Inc. (2020). ABAQUS theory manual. Providence, RI: Dassault Systèmes.
  • Huang, Y. H. (2004). Pavement analysis and design (2nd ed.). Upper Saddle River, NJ: Prentice Hall.
  • Kim, Y. R., & Little, D. N. (1990). Application of viscoelasticity to modeling asphalt concrete behavior. Journal of Materials in Civil Engineering, 2(4), 223–239.
  • Li, N., & Zhang, J. (2012). Effect of subbase materials on pavement performance. Journal of Transportation Engineering, 138(3), 358–366. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000313
  • National Cooperative Highway Research Program. (2024). Reports. Washington, D.C.: Transportation Research Board.
  • NCHRP Report 602. (2008). Verification of structural capacity of pavement foundation layers. Transportation Research Board.
  • Shackelford, C. D. (2014). Introduction to environmental soil physics. Hoboken, NJ: Wiley.
  • Sivakugan, N., & Das, B. M. (2021). Geotechnical engineering: Principles and practices. Boston, MA: Cengage Learning.
  • Thom, N. H. (2008). Principles of pavement engineering. London: ICE Publishing.
  • Timoshenko, S. P., & Goodier, J. N. (1970). Theory of elasticity (3rd ed.). New York, NY: McGraw-Hill.
  • Uzan, J. (2001). Characterization of granular materials. Transportation Research Record.
  • Werkmeister, S., Dawson, A. R., & Wellner, F. (2005). Permanent deformation behavior of granular materials under repeated loading. Transportation Research Record, 1913, 73–81.
  • Westergaard, H. M. (1939). Stresses in concrete pavements computed by theoretical analysis. Public Roads, 20(1), 1–25.
  • World Bank Group. (2011). Transport infrastructure and economic growth. Washington, D.C.: World Bank Publications.
  • Yu, H. S. (2006). Plasticity and geotechnics. Berlin: Springer.
  • Zhang, Y., Wang, L., & Chen, Q. (2021). Finite element analysis of pavement structures with varying base layer stiffness. International Journal of Pavement Engineering, 22(4), 467–480. https://doi.org/10.1080/10298436.2020.1717961
  • Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The finite element method: Its basis and fundamentals (6th ed.). Oxford: Butterworth-Heinemann.

Modeling of highway subbase and base layers using Abaqus software

Year 2025, Volume: 5 Issue: 1, 61 - 75, 25.06.2025
https://doi.org/10.58771/joinmet.1695267

Abstract

Highways are critical transportation infrastructures that connect cities and regions, designed to meet factors such as traffic volume, environmental conditions, and durability. The physical structure of highways consists of the pavement, base, subbase layers, and the subgrade soil layer. Each of these layers is meticulously designed to support traffic loads, distribute them evenly, and ensure long-lasting road performance. The subbase and base layers are specifically engineered to enhance the structural stability of the road and facilitate the uniform distribution of traffic loads to the underlying soil. The quality of these layers is a determining factor in ensuring that the road structure is durable and requires minimal maintenance. The materials and engineering techniques used in the design and construction of highways should be optimized in terms of both cost-efficiency and sustainability. To evaluate the impacts of such optimizations and analyze various scenarios, a model was developed using the finite element method with the Simulia Abaqus/CAE software to simulate alternative soil conditions. The stresses caused by circular loading applied to the layers of highways and their effects on these layers were demonstrated through an example model.

References

  • Ahmed, A., Khan, R., & Al-Nageim, H. (2019). Performance evaluation of stabilized subbase layers using FEM modeling. Construction and Building Materials, 223, 122–130. https://doi.org/10.1016/j.conbuildmat.2019.06.038
  • American Association of State Highway and Transportation Officials. (1993). AASHTO guide for design of pavement structures. Washington, D.C.: AASHTO.
  • American Association of State Highway and Transportation Officials. (2012). AASHTO guide for design of pavement structures. Washington, D.C.: AASHTO.
  • Barksdale, R. D., & Itani, S. Y. (1989). Influence of aggregate shape on base behavior. Transportation Research Record.
  • Bisht, A., Ghosh, P., & Dey, A. (2016). Modeling viscoelastic behavior of bituminous materials using Abaqus. Construction and Building Materials, 121, 244–251. https://doi.org/10.1016/j.conbuildmat.2016.05.114
  • Boussinesq, J. (1885). Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques. Paris: Gauthier-Villars.
  • Bowles, J. E. (1997). Foundation analysis and design (5th ed.). New York, NY: McGraw-Hill.
  • Budhu, M. (2010). Soil mechanics and foundations (2nd ed.). Hoboken, NJ: John Wiley & Sons.
  • Coduto, D. P. (2010). Foundation design: Principles and practices (2nd ed.). Boston, MA: Pearson.
  • Craig, R. F. (2004). Craig’s soil mechanics (7th ed.). London: Spon Press.
  • Dassault Systèmes. (2021). ABAQUS documentation. Providence, RI: Dassault Systèmes.
  • Das, B. M. (2010). Principles of geotechnical engineering (7th ed.). Stamford, CT: Cengage Learning.
  • Ding, Y., Yang, J., & Yu, H. S. (2013). Modeling behavior of subgrade soils subjected to cyclic loading. International Journal of Geomechanics, 13(6), 823–831. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000273
  • Federal Highway Administration. (2023). Highway functional classification: Concepts, criteria and procedures. U.S. Department of Transportation.
  • Ghafoori, N., Asadi, S., & Darvishan, E. (2020). Three-dimensional finite element modeling of geogrid-reinforced pavements under cyclic loading. Geotextiles and Geomembranes, 48(5), 567–577. https://doi.org/10.1016/j.geotexmem.2020.02.005
  • Helwany, S. (2007). Applied soil mechanics with Abaqus applications. Hoboken, NJ: Wiley.
  • Hibbit, Karlsson & Sorensen Inc. (2020). ABAQUS theory manual. Providence, RI: Dassault Systèmes.
  • Huang, Y. H. (2004). Pavement analysis and design (2nd ed.). Upper Saddle River, NJ: Prentice Hall.
  • Kim, Y. R., & Little, D. N. (1990). Application of viscoelasticity to modeling asphalt concrete behavior. Journal of Materials in Civil Engineering, 2(4), 223–239.
  • Li, N., & Zhang, J. (2012). Effect of subbase materials on pavement performance. Journal of Transportation Engineering, 138(3), 358–366. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000313
  • National Cooperative Highway Research Program. (2024). Reports. Washington, D.C.: Transportation Research Board.
  • NCHRP Report 602. (2008). Verification of structural capacity of pavement foundation layers. Transportation Research Board.
  • Shackelford, C. D. (2014). Introduction to environmental soil physics. Hoboken, NJ: Wiley.
  • Sivakugan, N., & Das, B. M. (2021). Geotechnical engineering: Principles and practices. Boston, MA: Cengage Learning.
  • Thom, N. H. (2008). Principles of pavement engineering. London: ICE Publishing.
  • Timoshenko, S. P., & Goodier, J. N. (1970). Theory of elasticity (3rd ed.). New York, NY: McGraw-Hill.
  • Uzan, J. (2001). Characterization of granular materials. Transportation Research Record.
  • Werkmeister, S., Dawson, A. R., & Wellner, F. (2005). Permanent deformation behavior of granular materials under repeated loading. Transportation Research Record, 1913, 73–81.
  • Westergaard, H. M. (1939). Stresses in concrete pavements computed by theoretical analysis. Public Roads, 20(1), 1–25.
  • World Bank Group. (2011). Transport infrastructure and economic growth. Washington, D.C.: World Bank Publications.
  • Yu, H. S. (2006). Plasticity and geotechnics. Berlin: Springer.
  • Zhang, Y., Wang, L., & Chen, Q. (2021). Finite element analysis of pavement structures with varying base layer stiffness. International Journal of Pavement Engineering, 22(4), 467–480. https://doi.org/10.1080/10298436.2020.1717961
  • Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The finite element method: Its basis and fundamentals (6th ed.). Oxford: Butterworth-Heinemann.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Transportation Engineering
Journal Section Research Article
Authors

Beste Çarıcı 0000-0003-2210-7995

Jülide Öner 0000-0003-3229-152X

Submission Date May 8, 2025
Acceptance Date June 5, 2025
Publication Date June 25, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

APA Çarıcı, B., & Öner, J. (2025). Karayolları alttemel ve temel tabakalarının Abaqus programı ile modellemesi. Journal of Marine and Engineering Technology, 5(1), 61-75. https://doi.org/10.58771/joinmet.1695267