Research Article
BibTex RIS Cite

Geniş Bantlı Yüksek Performanslı Antipodal Vivaldi Anteni: Kablosuz İletişim Sistemleri için Verimli Bir Tasarım

Year 2024, , 17 - 32, 27.06.2024
https://doi.org/10.58769/joinssr.1398068

Abstract

Bu çalışma, bilgisayar destekli tasarım ve parametrik tarama yöntemleri kullanılarak optimize edilen antipodal Vivaldi anteninin bakır kaplı FR-4 malzeme üzerine baskı devre aşamalarını ve VNA cihazında yapılan ölçümleri kapsar. Temel gaye, antenin çeşitli mobil haberleşme teknolojileriyle uyumlu bir şekilde çalışabilmesi için istenen frekanslarda optimize ederek anten tasarım ve üretim süreçlerini iyileştirmektir. Yapılan ölçümler, antenin 807 MHz, 2643 MHz ve 3050 MHz frekanslarında başarıyla çalıştığını göstermektedir. Bu veriler, antenin farklı iletişim teknikleriyle uyumluca kullanılabileceğini ve geniş spektrum uyumluluğuna sahip olduğunu göstermektedir. Elde edilen bilgiler, endüstriyel uygulamalar için değerli referanslar sunarak gelecekteki kablosuz iletişim teknolojilerinin gelişimine katkı sağlayabilir.

References

  • [1] Alsharif, M. H., Hossain, M. S., Jahid, A., Khan, M. A., Choi, B. J., & Mostafa, S. M. (2022). Milestones of Wireless Communication Networks and Technology Prospect of Next Generation (6G). Computers, Materials & Continua, 71(3).
  • [2] Thaiwirot, W., Kamoldej, D., Detchporn, P., Thongdit, P. & Tangwachirapan, S. (2022). Antipodal Vivaldi Antenna with Dielectric Lens for Biomedical Imaging Applications. IEEE Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C), Bangkok, Thailand, pp. 93-96, doi: 10.1109/RI2C56397.2022.9910304.
  • [3] Wang, M., Crocco, L., Costanzo, S., Scapaticci, R. & Cavagnaro, M. (2022). A Compact Slot-Loaded Antipodal Vivaldi Antenna for a Microwave Imaging System to Monitor Liver Microwave Thermal Ablation. IEEE Open Journal of Antennas and Propagation, 3, pp. 700-708, doi: 10.1109/OJAP.2022.3183750.
  • [4] Kumar, S., & Dixit, A. (2022). Design of a high-gain dual-band antipodal Vivaldi antenna array for 5G communications. International Journal of Microwave and Wireless Technologies, 14(9), 1159-1167, doi:10.1017/S175907872100163X
  • [5] Wang, J., Liu, J., Hou, K., & Li, Y. (2023). A novel antipodal Vivaldi antenna for ultra-wideband far-field detection. AEU-International Journal of Electronics and Communications, 164, 154626.
  • [6] Muchhal, N., Vintimilla, R. Z., Fares, Y., & Elkhouly, M. (2023). Review on Recent Trends and Applications of Vivaldi Antenna in the Range of 1 GHz–40 GHz. The Fifteenth International Conference on Advances in Satellite and Space Communications.
  • [7] Stanley, M., Parker‐Jervis, R., de Graaf, S., Lindström, T., Cunningham, J. E., & Ridler, N. M. (2022). Validating S‐ parameter measurements of RF integrated circuits at milli‐Kelvin temperatures. Electronics Letters, 58(16), 614-616.
  • [8] Presse, A., Floc’h, J. M., Tarot, A. C. and Camus, C.. (2013). Broadband UHF flexible vivaldi antenna. Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, pp. 277-280, doi: 10.1109/LAPC.2013.6711900.
  • [9] Di Trapani, F., Sberna, A. P., & Marano, G. C. (2022). A genetic algorithm-based framework for seismic retrofitting cost and expected annual loss optimization of non-conforming reinforced concrete frame structures. Computers & Structures, 271, 106855..
  • [10] Han, S., & Li, X. (2022). An improved adaptive genetic algorithm. In SHS Web of Conferences, 140. EDP Sciences.
  • [11] Xu, H. Q., Gu, S., Fan, Y. C., Li, X. S., Zhao, Y. F., Zhao, J., & Wang, J. J. (2023). A strategy learning framework for particle swarm optimization algorithm. Information Sciences, 619, 126-152.
  • [12] Gad, A. G. (2022). Particle swarm optimization algorithm and its applications: a systematic review. Archives of computational methods in engineering, 29(5), 2531-2561.
  • [13] Duan J. & Zhu L. (2022). Numerical Short-On-Load (SOL) Calibration Technique for Accurate Extraction of Electrically-Small Planar/Non-Planar Microstrip-Line Circuits. IEEE Transactions on Microwave Theory and Techniques, 70(4), pp. 2067-2076, doi: 10.1109/TMTT.2022.3143947.
  • [14] Cheng, J., Zhang, H., Ning, M., Raza, H., Zhang, D., Zheng, G., ... & Che, R. (2022). Emerging materials and designs for low‐and multi‐band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? Advanced Functional Materials, 32(23), 2200123.
  • [15] Satılmış, G. (2022). Genetik Algoritma Kullanarak Dipol Dizi Antenlerde Yan Lob Bastırma. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 3(2), 50-56.

Broadband High-Performance Antipodal Vivaldi Antenna: An Efficient Design for Wireless Communication Systems

Year 2024, , 17 - 32, 27.06.2024
https://doi.org/10.58769/joinssr.1398068

Abstract

This study encompasses the printed circuit board stages of an antipodal Vivaldi antenna, optimized using computer-aided design and parametric scanning methods, on copper-coated FR-4 material, along with measurements conducted using a VNA. The primary objective is to enhance the antenna design and production processes by optimizing the frequencies desired for the antenna to function compatibly with various mobile communication technologies. The measurements indicate successful operation of the antenna at 807 MHz, 2643 MHz, and 3050 MHz frequencies. These findings demonstrate that the antenna can be effectively utilized with different communication techniques and possesses broad-spectrum compatibility. The acquired information, by providing valuable references for industrial applications, may contribute to the advancement of future wireless communication technologies.

References

  • [1] Alsharif, M. H., Hossain, M. S., Jahid, A., Khan, M. A., Choi, B. J., & Mostafa, S. M. (2022). Milestones of Wireless Communication Networks and Technology Prospect of Next Generation (6G). Computers, Materials & Continua, 71(3).
  • [2] Thaiwirot, W., Kamoldej, D., Detchporn, P., Thongdit, P. & Tangwachirapan, S. (2022). Antipodal Vivaldi Antenna with Dielectric Lens for Biomedical Imaging Applications. IEEE Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C), Bangkok, Thailand, pp. 93-96, doi: 10.1109/RI2C56397.2022.9910304.
  • [3] Wang, M., Crocco, L., Costanzo, S., Scapaticci, R. & Cavagnaro, M. (2022). A Compact Slot-Loaded Antipodal Vivaldi Antenna for a Microwave Imaging System to Monitor Liver Microwave Thermal Ablation. IEEE Open Journal of Antennas and Propagation, 3, pp. 700-708, doi: 10.1109/OJAP.2022.3183750.
  • [4] Kumar, S., & Dixit, A. (2022). Design of a high-gain dual-band antipodal Vivaldi antenna array for 5G communications. International Journal of Microwave and Wireless Technologies, 14(9), 1159-1167, doi:10.1017/S175907872100163X
  • [5] Wang, J., Liu, J., Hou, K., & Li, Y. (2023). A novel antipodal Vivaldi antenna for ultra-wideband far-field detection. AEU-International Journal of Electronics and Communications, 164, 154626.
  • [6] Muchhal, N., Vintimilla, R. Z., Fares, Y., & Elkhouly, M. (2023). Review on Recent Trends and Applications of Vivaldi Antenna in the Range of 1 GHz–40 GHz. The Fifteenth International Conference on Advances in Satellite and Space Communications.
  • [7] Stanley, M., Parker‐Jervis, R., de Graaf, S., Lindström, T., Cunningham, J. E., & Ridler, N. M. (2022). Validating S‐ parameter measurements of RF integrated circuits at milli‐Kelvin temperatures. Electronics Letters, 58(16), 614-616.
  • [8] Presse, A., Floc’h, J. M., Tarot, A. C. and Camus, C.. (2013). Broadband UHF flexible vivaldi antenna. Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, pp. 277-280, doi: 10.1109/LAPC.2013.6711900.
  • [9] Di Trapani, F., Sberna, A. P., & Marano, G. C. (2022). A genetic algorithm-based framework for seismic retrofitting cost and expected annual loss optimization of non-conforming reinforced concrete frame structures. Computers & Structures, 271, 106855..
  • [10] Han, S., & Li, X. (2022). An improved adaptive genetic algorithm. In SHS Web of Conferences, 140. EDP Sciences.
  • [11] Xu, H. Q., Gu, S., Fan, Y. C., Li, X. S., Zhao, Y. F., Zhao, J., & Wang, J. J. (2023). A strategy learning framework for particle swarm optimization algorithm. Information Sciences, 619, 126-152.
  • [12] Gad, A. G. (2022). Particle swarm optimization algorithm and its applications: a systematic review. Archives of computational methods in engineering, 29(5), 2531-2561.
  • [13] Duan J. & Zhu L. (2022). Numerical Short-On-Load (SOL) Calibration Technique for Accurate Extraction of Electrically-Small Planar/Non-Planar Microstrip-Line Circuits. IEEE Transactions on Microwave Theory and Techniques, 70(4), pp. 2067-2076, doi: 10.1109/TMTT.2022.3143947.
  • [14] Cheng, J., Zhang, H., Ning, M., Raza, H., Zhang, D., Zheng, G., ... & Che, R. (2022). Emerging materials and designs for low‐and multi‐band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? Advanced Functional Materials, 32(23), 2200123.
  • [15] Satılmış, G. (2022). Genetik Algoritma Kullanarak Dipol Dizi Antenlerde Yan Lob Bastırma. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 3(2), 50-56.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Modelling and Simulation
Journal Section Research Articles
Authors

Mehmet Duman 0000-0002-0831-0172

Volkan Berk This is me 0009-0000-6577-9842

Publication Date June 27, 2024
Submission Date November 30, 2023
Acceptance Date January 29, 2024
Published in Issue Year 2024

Cite

APA Duman, M., & Berk, V. (2024). Geniş Bantlı Yüksek Performanslı Antipodal Vivaldi Anteni: Kablosuz İletişim Sistemleri için Verimli Bir Tasarım. Journal of Smart Systems Research, 5(1), 17-32. https://doi.org/10.58769/joinssr.1398068
AMA Duman M, Berk V. Geniş Bantlı Yüksek Performanslı Antipodal Vivaldi Anteni: Kablosuz İletişim Sistemleri için Verimli Bir Tasarım. JoinSSR. June 2024;5(1):17-32. doi:10.58769/joinssr.1398068
Chicago Duman, Mehmet, and Volkan Berk. “Geniş Bantlı Yüksek Performanslı Antipodal Vivaldi Anteni: Kablosuz İletişim Sistemleri için Verimli Bir Tasarım”. Journal of Smart Systems Research 5, no. 1 (June 2024): 17-32. https://doi.org/10.58769/joinssr.1398068.
EndNote Duman M, Berk V (June 1, 2024) Geniş Bantlı Yüksek Performanslı Antipodal Vivaldi Anteni: Kablosuz İletişim Sistemleri için Verimli Bir Tasarım. Journal of Smart Systems Research 5 1 17–32.
IEEE M. Duman and V. Berk, “Geniş Bantlı Yüksek Performanslı Antipodal Vivaldi Anteni: Kablosuz İletişim Sistemleri için Verimli Bir Tasarım”, JoinSSR, vol. 5, no. 1, pp. 17–32, 2024, doi: 10.58769/joinssr.1398068.
ISNAD Duman, Mehmet - Berk, Volkan. “Geniş Bantlı Yüksek Performanslı Antipodal Vivaldi Anteni: Kablosuz İletişim Sistemleri için Verimli Bir Tasarım”. Journal of Smart Systems Research 5/1 (June 2024), 17-32. https://doi.org/10.58769/joinssr.1398068.
JAMA Duman M, Berk V. Geniş Bantlı Yüksek Performanslı Antipodal Vivaldi Anteni: Kablosuz İletişim Sistemleri için Verimli Bir Tasarım. JoinSSR. 2024;5:17–32.
MLA Duman, Mehmet and Volkan Berk. “Geniş Bantlı Yüksek Performanslı Antipodal Vivaldi Anteni: Kablosuz İletişim Sistemleri için Verimli Bir Tasarım”. Journal of Smart Systems Research, vol. 5, no. 1, 2024, pp. 17-32, doi:10.58769/joinssr.1398068.
Vancouver Duman M, Berk V. Geniş Bantlı Yüksek Performanslı Antipodal Vivaldi Anteni: Kablosuz İletişim Sistemleri için Verimli Bir Tasarım. JoinSSR. 2024;5(1):17-32.