Artificial neural networks (ANN) are a method that produces solutions to many problems by imitating the work of human biological nerve cells, problems such as prediction, classification, optimization, signal processing, and modeling of nonlinear systems. In the early stages of the historical development of ANN, only linear problems were solved by using single-layer perceptrons. Multilayer perceptron models have been developed to solve nonlinear problems. In the training of an ANN, the learning method that takes place by giving the input and output values together is called the supervised learning method. In the multilayer network model, the supervised learning method is used. In this study, for the solution of nonlinear problems, an interface is designed in the LabVIEW environment by using Back Propagation model from ANN. With the emerging design, the weather forecast problem has been solved. The learning process was carried out by giving the input and output values of the weather conditions to the multilayer network model, in which the supervised learning method was used. By changing the parameters such as the number of neurons in the layers, the learning coefficient, the momentum coefficient, the number of iterations, and the initial weights, the network is trained, and the performance of the network is measured by testing it.
Artificial Neural Networks (ANN) Multilayer Networks LabVIEW Generalized Delta Learning Method Prediction Weather Forecasting
Yapay sinir ağları (YSA), insanın biyolojik sinir hücrelerinin çalışmasının taklit edilmesi sonucunda tahmin, sınıflandırma, optimizasyon, sinyal işleme, doğrusal olmayan sistemlerin modellenmesi gibi birçok alanda karşımıza çıkan problemlere çözüm üreten bir yöntemdir. YSA’ nın tarihsel gelişiminde önce tek katmanlı algılayıcılar kullanılarak sadece doğrusal problemlere çözüm getirilmiştir. Doğrusal olmayan problemlerin çözümü için çok katmanlı algılayıcı (ÇKA) ağ modelleri geliştirilmiştir. Bir YSA’ nın eğitiminde girdi ve çıktı değerlerinin birlikte verilmesi ile gerçekleşen öğrenme metodu gözetimli öğrenme metodu şeklinde adlandırılır. YSA’ nın ÇKA modelinde gözetimli öğrenme metodu kullanılmaktadır. Bu çalışmada; doğrusal olmayan problemlerin çözümü için YSA’ nın geri yayılımlı ÇKA modeli kullanılarak LabVIEW ortamında bir ara yüz tasarlanmıştır. Gerçekleştirilen tasarım ile hava durumu tahmin problemine çözüm getirilmiştir. Gözetimli öğrenme metodu kullanılan ÇKA modeline hava durumunun girdi ve çıktı değerleri birlikte verilerek öğrenme işlemi gerçekleştirilmiştir. Tasarımda katmanlardaki nöron sayısı, öğrenme katsayısı, momentum katsayısı, iterasyon sayısı, başlangıç ağırlıkları gibi parametreler değiştirilerek ağın eğitilmesi sağlanmakta ve test edilerek ağın performans ölçümü gerçekleştirilmektedir.
Yapay Sinir Ağları Çok Katmanlı Ağ LabVIEW Genelleştirilmiş Delta Öğrenme Metodu Hava Tahmini
Primary Language | Turkish |
---|---|
Subjects | Artificial Intelligence |
Journal Section | Research Articles |
Authors | |
Publication Date | December 26, 2022 |
Published in Issue | Year 2022 Volume: 3 Issue: 2 |