Clinical Research
BibTex RIS Cite

Nonarteritik Anterior İskemik Optik Nöropatili Bireylerde Serebellum ve Kortikal Görme Merkezlerinin Otomatik Segmentasyon Kullanılarak Volümetrik İncelenmesi

Year 2025, Volume: 4 Issue: 1, 1 - 8, 30.04.2025
https://doi.org/10.58651/jomtu.1628587

Abstract

Amaç: Non-arteritik anterior iskemik optik nöropati (NAİON), optik sinirin ön kısmındaki akut iskemik hasarın neden olduğu klinik bir durumdur. Bu çalışmada, NAİON hastalarının ve sağlıklı kontrollerin (HC) beyin manyetik rezonans görüntüleme (MRG) görüntüleri otomatik segmentasyon yöntemi kullanılarak analiz edildi ve karşılaştırıldı.

Gereç ve Yöntem: Çalışmaya 14 NAİON ve 14 HC tanılı hasta dahil edildi. Beyin MR görüntülerinin volumetrik analizi için Voksel Tabanlı Morfometri (VBM) ile beyin parselasyonu sağlayan VolBrain yöntemi kullanıldı. Bulguların istatistiksel analizinde Mann-Whitney U testi kullanıldı.

Bulgular: NAİON hastalarında cerebrum, substantia grisea ve substantia alba, lobus frontalis ve gyrus frontalis medius, lobus occipitalis, cortex calcarinus, gyrus lingualis, gyrus occipitalis superior ve gyrus occipitalis medius hacimlerinin HC’ye göre anlamlı derecede düşük olduğunu bulduk (p < 0,05). Cerebellum ve bölümlerinin hacim analizinde iki grup arasında istatistiksel olarak anlamlı bir fark yoktu (p > 0,05).

Sonuç: Çalışmamız NAİON’un cortex cerebri’nin görsel ve görsel olmayan bölgelerinde hacimsel değişikliklere yol açtığını, ancak serebellum hacminde anlamlı bir değişiklik oluşturmadığını ortaya koymaktadır.

References

  • 1. Goebel R, Muckli L, Kim DS. Visual system. In: Paxinos G, Mai JK, editors. The Human Nervous System. 2nd ed. San Diego: Elsevier; 2004. p. 1280–1305.
  • 2. Standring S, editor. Gray’s Anatomy: The Anatomical Basis of Clinical Practice. 40th ed. Edinburgh: Churchill Livingstone Elsevier; 2008.
  • 3. Dworak DP, Nichols J. A review of optic neuropathies. Dis Mon. 2014;60(6):276–81.
  • 4. Kahloun R, Abroug N, Ksiaa I, Mahmoud A, Zeghidi H, Zaouali S, et al. Infectious optic neuropathies: a clinical update. Eye Brain. 2015;7:59–81.
  • 5. Buono LM, Foroozan R, Sergott RC, Savino PJ. Nonarteritic anterior ischemic optic neuropathy. Curr Opin Ophthalmol. 2002;13(6):357–61.
  • 6. Mathews MK. Nonarteritic anterior ischemic optic neuropathy. Curr Opin Ophthalmol. 2005;16(6):341–5.
  • 7. Ptito M, Schneider FC, Paulson OB, Kupers R. Alterations of the visual pathways in congenital blindness. Exp Brain Res. 2008;187(1):41–9.
  • 8. Beyer TR, van Oterendorp C. Nonarteritic anterior ischemic optic neuropathy (nAION). Ophthalmologe. 2023;120(3):200–5.
  • 9. Akudjedu TN, Nabulsi L, Makelyte M, Scanlon C, Hehir S, Casey H, et al. A comparative study of segmentation techniques for the quantification of brain subcortical volume. Brain Imaging Behav. 2018;12(6):1678–95.
  • 10. Manjón JV, Romero JE, Vivo-Hernando R, Rubio G, Aparici F, de la Iglesia-Vaya M, et al. vol2Brain: a new online pipeline for whole brain MRI analysis. Front Neuroinform. 2022;16:862805.
  • 11. Acer N, Bastepe-Gray S, Sagiroglu A, Gumus KZ, Degirmencioglu L, Zararsiz G, et al. Diffusion tensor and volumetric magnetic resonance imaging findings in the brains of professional musicians. J Chem Neuroanat. 2018;88:33–40.
  • 12. Modi S, Bhattacharya M, Singh N, Tripathi RP, Khushu S. Effect of visual experience on structural organization of the human brain: a voxel based morphometric study using DARTEL. Eur J Radiol. 2012;81(10):2811–9.
  • 13. Park HJ, Lee JD, Kim EY, Park B, Oh MK, Lee S, et al. Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area. Neuroimage. 2009;47(1):98–106.
  • 14. Sayin Sakul A, Pençe KB, Ormeci T, Gunal M. Can volumetric analysis of the brain help diagnose isolated optic neuritis? Clin Anat. 2023;36(8):1109–15.
  • 15. Zhao H, Shi YD, Liang RB, Ge QM, Pan YC, Zhang LJ, et al. Voxel-based morphometry reveals altered gray matter volume related to cognitive dysfunctioning in neovascular glaucoma patients. J Integr Neurosci. 2021;20(4):839–46.
  • 16. Frezzotti P, Giorgio A, Motolese I, De Leucio A, Iester M, Motolese E, et al. Structural and functional brain changes beyond visual system in patients with advanced glaucoma. PLoS One. 2014;9(8):e105931.
  • 17. Coupé P, Manjón JV, Fonov V, Pruessner J, Robles M, Collins DL. Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. Neuroimage. 2011;54(2):940–54.
  • 18. Bennett JL. Optic neuritis. Continuum (Minneap Minn). 2019;25(5):1236–64.
  • 19. Yıldız R, Özden AV, Nişancı OS, Yıldız Kızkın Z, Demirkıran BC. The effects of transcutaneous auricular vagus nerve stimulation on visual memory performance and fatigue. Turk J Phys Med Rehabil. 2023;69(3):327–33.
  • 20. Yildiz R, Özden AV, Nişancı OS, Demirkiran BC. The effects of transcutaneous auricular vagus stimulation on sustained attention and depression in individuals who are likely to have ADHD. Biomed Sci Clin Res. 2024;3(2):1–8.
  • 21. Garzone D, Finger RP, Mauschitz MM, Koch A, Reuter M, Breteler MM, et al. Visual impairment and retinal and brain neurodegeneration: a population-based study. Hum Brain Mapp. 2023;44(7):2701–11.
  • 22. Huang X, Zhang Q, Hu PH, Zhong YL, Zhang Y, Wei R, et al. White and gray matter volume changes and correlation with visual evoked potential in patients with optic neuritis: a voxel-based morphometry study. Med Sci Monit. 2016;22:1115–22.
  • 23. Aliosmanoğlu B, Köçkar Ç. Üniversite öğrencilerinde el tercihinin ve dominant gözün bazı hastalıklar ile ilişkisi. Eur J Basic Med Sci. 2014;4(3):53–7.
  • 24. Wu H, Luo B, Wang Q, Zhao Y, Yuan G, Liu P, et al. Functional and morphological brain alterations in dysthyroid optic neuropathy: a combined resting-state fMRI and voxel-based morphometry study. J Magn Reson Imaging. 2023;58(2):510–7.
  • 25. Hanson RL, Gale RP, Gouws AD, Airody A, Scott MT, Akthar F, et al. Following the status of visual cortex over time in patients with macular degeneration reveals atrophy of visually deprived brain regions. Invest Ophthalmol Vis Sci. 2019;60(15):5045–51.
  • 26. Ptito M, Giguère JF, Boire D, Frost D, Casanova C. When the auditory cortex turns visual. Prog Brain Res. 2001;134:447–58.
  • 27. Kupers R, Ptito M. Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev. 2014;41:36–52.
  • 28. Shu N, Liu Y, Li J, Li Y, Yu C, Jiang T. Altered anatomical network in early blindness revealed by diffusion tensor tractography. PLoS One. 2009;4(9):e7228.
  • 29. Ricciardi E, Pietrini P. New light from the dark: what blindness can teach us about brain function. Curr Opin Neurol. 2011;24(4):357–63.
  • 30. Liu Y, Yu C, Liang M, Li J, Tian L, Zhou Y, et al. Whole brain functional connectivity in the early blind. Brain. 2007;130(8):2085–96.
  • 31. Shimony J, Burton H, Epstein A, McLaren D, Sun S, Snyder A. Diffusion tensor imaging reveals white matter reorganization in early blind humans. Cereb Cortex. 2006;16(11):1653–61.
  • 32. Bolduc ME, Du Plessis AJ, Sullivan N, Guizard N, Zhang X, Robertson RL, et al. Regional cerebellar volumes predict functional outcome in children with cerebellar malformations. Cerebellum. 2012;11(3):531–42.
  • 33. Romero JE, Coupé P, Giraud R, Ta VT, Fonov V, Park MTM, et al. CERES: a new cerebellum lobule segmentation method. Neuroimage. 2017;147:916–24.
  • 34. Stoodley CJ, Schmahmann JD. Functional topography of the human cerebellum. Handb Clin Neurol. 2018;154:59–70.
  • 35. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4)::953–65.
  • 36. Schniepp R, Möhwald K, Wuehr M. Gait ataxia in humans: vestibular and cerebellar control of dynamic stability. J Neurol. 2017;264:87–92.
  • 37. Özen Ö, Aslan F. Morphometric evaluation of cerebellar structures in late monocular blindness. Int Ophthalmol. 2021;41(3):769–776.

Volumetric examination of the cerebellum and cortical visual centres in individuals with nonarteritic anterior ischemic optic neuropathy using automatic segmentation

Year 2025, Volume: 4 Issue: 1, 1 - 8, 30.04.2025
https://doi.org/10.58651/jomtu.1628587

Abstract

Objective: Non-arteritic anterior ischemic optic neuropathy (NAION) is a clinical condition caused by acute ischemic damage to the anterior part of the optic nerve. In this study, brain magnetic resonance imaging (MRI) images of NAION patients and healthy control subjects (HC) were analyzed and compared using an automatic segmentation method.

Materials and Methods: The study included 14 patients diagnosed with NAION and 14 HC. VolBrain method, which provides brain parcellation with Voxel-Based Morphometry (VBM), was used for volumetric analysis of brain MR images. In the statistical analysis of the findings, the Mann-Whitney U test was employed.

Results: We found that cerebrum, gray and white matter, frontal lobe and middle frontal gyri, occipital lobe, calcarine cortex, lingual gyrus, superior and middle occipital gyri volumes were significantly lower in NAION patients compared to the HC (p < 0.05). There was no statistically significant difference between the two groups in the volume analysis of the cerebellum and its parts (p > 0.05).

Conclusions: Our study reveals that NAION induces volumetric changes in visual and non-visual regions of the cerebral cortex, but not in the volume of the cerebellum.

Ethical Statement

The necessary permission to conduct the research was obtained from Tokat Gaziosmanpaşa University Faculty of Medicine Dean's Office Clinical Research Ethics Committee (Date: 09.11.2023 No: 2023/20)

References

  • 1. Goebel R, Muckli L, Kim DS. Visual system. In: Paxinos G, Mai JK, editors. The Human Nervous System. 2nd ed. San Diego: Elsevier; 2004. p. 1280–1305.
  • 2. Standring S, editor. Gray’s Anatomy: The Anatomical Basis of Clinical Practice. 40th ed. Edinburgh: Churchill Livingstone Elsevier; 2008.
  • 3. Dworak DP, Nichols J. A review of optic neuropathies. Dis Mon. 2014;60(6):276–81.
  • 4. Kahloun R, Abroug N, Ksiaa I, Mahmoud A, Zeghidi H, Zaouali S, et al. Infectious optic neuropathies: a clinical update. Eye Brain. 2015;7:59–81.
  • 5. Buono LM, Foroozan R, Sergott RC, Savino PJ. Nonarteritic anterior ischemic optic neuropathy. Curr Opin Ophthalmol. 2002;13(6):357–61.
  • 6. Mathews MK. Nonarteritic anterior ischemic optic neuropathy. Curr Opin Ophthalmol. 2005;16(6):341–5.
  • 7. Ptito M, Schneider FC, Paulson OB, Kupers R. Alterations of the visual pathways in congenital blindness. Exp Brain Res. 2008;187(1):41–9.
  • 8. Beyer TR, van Oterendorp C. Nonarteritic anterior ischemic optic neuropathy (nAION). Ophthalmologe. 2023;120(3):200–5.
  • 9. Akudjedu TN, Nabulsi L, Makelyte M, Scanlon C, Hehir S, Casey H, et al. A comparative study of segmentation techniques for the quantification of brain subcortical volume. Brain Imaging Behav. 2018;12(6):1678–95.
  • 10. Manjón JV, Romero JE, Vivo-Hernando R, Rubio G, Aparici F, de la Iglesia-Vaya M, et al. vol2Brain: a new online pipeline for whole brain MRI analysis. Front Neuroinform. 2022;16:862805.
  • 11. Acer N, Bastepe-Gray S, Sagiroglu A, Gumus KZ, Degirmencioglu L, Zararsiz G, et al. Diffusion tensor and volumetric magnetic resonance imaging findings in the brains of professional musicians. J Chem Neuroanat. 2018;88:33–40.
  • 12. Modi S, Bhattacharya M, Singh N, Tripathi RP, Khushu S. Effect of visual experience on structural organization of the human brain: a voxel based morphometric study using DARTEL. Eur J Radiol. 2012;81(10):2811–9.
  • 13. Park HJ, Lee JD, Kim EY, Park B, Oh MK, Lee S, et al. Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area. Neuroimage. 2009;47(1):98–106.
  • 14. Sayin Sakul A, Pençe KB, Ormeci T, Gunal M. Can volumetric analysis of the brain help diagnose isolated optic neuritis? Clin Anat. 2023;36(8):1109–15.
  • 15. Zhao H, Shi YD, Liang RB, Ge QM, Pan YC, Zhang LJ, et al. Voxel-based morphometry reveals altered gray matter volume related to cognitive dysfunctioning in neovascular glaucoma patients. J Integr Neurosci. 2021;20(4):839–46.
  • 16. Frezzotti P, Giorgio A, Motolese I, De Leucio A, Iester M, Motolese E, et al. Structural and functional brain changes beyond visual system in patients with advanced glaucoma. PLoS One. 2014;9(8):e105931.
  • 17. Coupé P, Manjón JV, Fonov V, Pruessner J, Robles M, Collins DL. Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. Neuroimage. 2011;54(2):940–54.
  • 18. Bennett JL. Optic neuritis. Continuum (Minneap Minn). 2019;25(5):1236–64.
  • 19. Yıldız R, Özden AV, Nişancı OS, Yıldız Kızkın Z, Demirkıran BC. The effects of transcutaneous auricular vagus nerve stimulation on visual memory performance and fatigue. Turk J Phys Med Rehabil. 2023;69(3):327–33.
  • 20. Yildiz R, Özden AV, Nişancı OS, Demirkiran BC. The effects of transcutaneous auricular vagus stimulation on sustained attention and depression in individuals who are likely to have ADHD. Biomed Sci Clin Res. 2024;3(2):1–8.
  • 21. Garzone D, Finger RP, Mauschitz MM, Koch A, Reuter M, Breteler MM, et al. Visual impairment and retinal and brain neurodegeneration: a population-based study. Hum Brain Mapp. 2023;44(7):2701–11.
  • 22. Huang X, Zhang Q, Hu PH, Zhong YL, Zhang Y, Wei R, et al. White and gray matter volume changes and correlation with visual evoked potential in patients with optic neuritis: a voxel-based morphometry study. Med Sci Monit. 2016;22:1115–22.
  • 23. Aliosmanoğlu B, Köçkar Ç. Üniversite öğrencilerinde el tercihinin ve dominant gözün bazı hastalıklar ile ilişkisi. Eur J Basic Med Sci. 2014;4(3):53–7.
  • 24. Wu H, Luo B, Wang Q, Zhao Y, Yuan G, Liu P, et al. Functional and morphological brain alterations in dysthyroid optic neuropathy: a combined resting-state fMRI and voxel-based morphometry study. J Magn Reson Imaging. 2023;58(2):510–7.
  • 25. Hanson RL, Gale RP, Gouws AD, Airody A, Scott MT, Akthar F, et al. Following the status of visual cortex over time in patients with macular degeneration reveals atrophy of visually deprived brain regions. Invest Ophthalmol Vis Sci. 2019;60(15):5045–51.
  • 26. Ptito M, Giguère JF, Boire D, Frost D, Casanova C. When the auditory cortex turns visual. Prog Brain Res. 2001;134:447–58.
  • 27. Kupers R, Ptito M. Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev. 2014;41:36–52.
  • 28. Shu N, Liu Y, Li J, Li Y, Yu C, Jiang T. Altered anatomical network in early blindness revealed by diffusion tensor tractography. PLoS One. 2009;4(9):e7228.
  • 29. Ricciardi E, Pietrini P. New light from the dark: what blindness can teach us about brain function. Curr Opin Neurol. 2011;24(4):357–63.
  • 30. Liu Y, Yu C, Liang M, Li J, Tian L, Zhou Y, et al. Whole brain functional connectivity in the early blind. Brain. 2007;130(8):2085–96.
  • 31. Shimony J, Burton H, Epstein A, McLaren D, Sun S, Snyder A. Diffusion tensor imaging reveals white matter reorganization in early blind humans. Cereb Cortex. 2006;16(11):1653–61.
  • 32. Bolduc ME, Du Plessis AJ, Sullivan N, Guizard N, Zhang X, Robertson RL, et al. Regional cerebellar volumes predict functional outcome in children with cerebellar malformations. Cerebellum. 2012;11(3):531–42.
  • 33. Romero JE, Coupé P, Giraud R, Ta VT, Fonov V, Park MTM, et al. CERES: a new cerebellum lobule segmentation method. Neuroimage. 2017;147:916–24.
  • 34. Stoodley CJ, Schmahmann JD. Functional topography of the human cerebellum. Handb Clin Neurol. 2018;154:59–70.
  • 35. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4)::953–65.
  • 36. Schniepp R, Möhwald K, Wuehr M. Gait ataxia in humans: vestibular and cerebellar control of dynamic stability. J Neurol. 2017;264:87–92.
  • 37. Özen Ö, Aslan F. Morphometric evaluation of cerebellar structures in late monocular blindness. Int Ophthalmol. 2021;41(3):769–776.
There are 37 citations in total.

Details

Primary Language English
Subjects Ophthalmology and Optometry (Other)
Journal Section Clinical Research
Authors

Ahmet Turan Urhan 0000-0002-1178-2998

Hilal Irmak Sapmaz 0000-0002-9821-1628

Şerife Gülhan Konuk 0000-0003-4071-5193

Fatma Kökcü 0000-0003-3548-5151

Publication Date April 30, 2025
Submission Date January 28, 2025
Acceptance Date March 8, 2025
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

APA Urhan, A. T., Irmak Sapmaz, H., Konuk, Ş. G., Kökcü, F. (2025). Volumetric examination of the cerebellum and cortical visual centres in individuals with nonarteritic anterior ischemic optic neuropathy using automatic segmentation. Journal of Medical Topics and Updates, 4(1), 1-8. https://doi.org/10.58651/jomtu.1628587