Research Article
BibTex RIS Cite

INDEX DECOMPOSITION ANALYSIS AND ENERGY CONSUMPTION OF TURKEY: 2000-2014

Year 2022, Volume: 6 Issue: 2, 107 - 134, 15.10.2022

Abstract

Index decomposition analysis (IDA) has been one of the important tools in energy and environmental studies in identifying the level of contribution of the driving factors of a change in an aggregate of interest during a time period or across different units such as countries or regions. Aiming to be an informative source for further studies conducted with this methodology, this paper provides a general review covering its historical development and mathematical formula. To see the contribution of economic growth, sectoral composition, and energy intensity to the energy consumption change in Turkey between 2000-2014, based on the energy and socio-economic accounts of the WIOD LMDI-I method is used as it is the most preferred IDA method due to its simplicity and ability to provide perfect decomposition.

References

  • Alkan, A., & Binatlı, A. O. (2021). Is Production or Consumption the Determiner? Sources of Turkey’s CO2 Emissions between 1990-2015 and Policy Implications. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 359–378. https://doi.org/10.17065/huniibf.823845
  • Ang, B. W. (1994). Decomposition of industrial energy consumption-The energy intensity approach. Energy Economics, 16(3), 163–174. https://doi.org/10.1016/0140-9883(94)90030-2
  • Ang, B. W. (1995a). Decomposition methodology in industrial energy demand analysis. Energy, 20(11), 1081–1095. https://doi.org/10.1016/0360-5442(95)00068-R
  • Ang, B. W. (1995b). Multilevel decomposition of industrial energy consumption. Energy Economics, 17(1), 39–51. https://doi.org/10.1016/0140-9883(95)98905-J
  • Ang, B. W. (2004a). Decomposition Analysis Applied to Energy. In C. J. Cleveland & R. U. Ayres (Eds.), Encyclopedia of Energy: Vol. I (pp. 761–769). Elsevier Academic Press.
  • Ang, B. W. (2004b). Decomposition analysis for policymaking in energy: which is the preferred method? Energy Policy, 32(9), 1131–1139. https://doi.org/10.1016/S0301-4215(03)00076-4
  • Ang, B. W. (2015). LMDI decomposition approach: A guide for implementation. Energy Policy, 86, 233–238. https://doi.org/10.1016/j.enpol.2015.07.007
  • Ang, B. W., & Choi, K.-H. (1997). Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method. The Energy Journal, 18(3), 59–73.
  • Ang, B. W., & Goh, T. (2019a). Routledge handbook of energy economics (U. Soytaş & R. Sarı, Eds.). Routledge.
  • Ang, B. W., & Goh, T. (2019b). Index decomposition analysis for comparing emission scenarios: Applications and challenges. Energy Economics, 83, 74–87. https://doi.org/10.1016/j.eneco.2019.06.013
  • Ang, B. W., Huang, H. C., & Mu, A. R. (2009). Properties and linkages of some index decomposition analysis methods. Energy Policy, 37(11), 4624–4632. https://doi.org/10.1016/j.enpol.2009.06.017
  • Ang, B. W., & Lee, S. Y. (1994). Decomposition of industrial energy consumption: Some methodological and application issues. Energy Economics, 16(2), 83–92. https://doi.org/10.1016/0140-9883(94)90001-9
  • Ang, B. W., & Liu, F. L. (2001). A new energy decomposition method: perfect in decomposition and consistent in aggregation. Energy, 26(6), 537–548. https://doi.org/10.1016/S0360-5442(01)00022-6
  • Ang, B. W., Liu, F. L., & Chew, E. P. (2003). Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 31(14), 1561–1566. https://doi.org/10.1016/S0301-4215(02)00206-9
  • Ang, B. W., Liu, F. L., & Chung, H.-S. (2004). A generalized Fisher index approach to energy decomposition analysis. Energy Economics, 26(5), 757–763. https://doi.org/10.1016/j.eneco.2004.02.002
  • Ang, B. W., & Liu, N. (2007a). Handling zero values in the logarithmic mean Divisia index decomposition approach. Energy Policy, 35(1), 238–246. https://doi.org/10.1016/j.enpol.2005.11.001
  • Ang, B. W., & Liu, N. (2007b). Negative-value problems of the logarithmic mean Divisia index decomposition approach. Energy Policy, 35(1), 739–742. https://doi.org/10.1016/j.enpol.2005.12.004
  • Ang, B. W., & Wang, H. (2015). Index decomposition analysis with multidimensional and multilevel energy data. Energy Economics, 51, 67–76. https://doi.org/10.1016/j.eneco.2015.06.004
  • Ang, B. W., Zhang, F., & Choi, K. (1998). Factorizing changes in energy and environmental indicators through decomposition. Energy, 23(6), 489–495. https://doi.org/10.1016/S0360-5442(98)00016-4
  • Ang, B. W., & Zhang, F. Q. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12), 1149–1176. https://doi.org/10.1016/S0360-5442(00)00039-6
  • Bektaş, A. (2021a). Decomposıtıon of Energy-Related Co2 Emission Over 1998-2017 In Turkey. Environmental Engineering & Management Journal (EEMJ), , 20(12), 1981–1998. Index Decomposition Analysis and Energy Consumption of Turkey: 2000-2014 131
  • Bektaş, A. (2021b). The Impact of European Green Deal on Turkey’s Iron and Steel Industry: Decomposition Analysis of Energy-Related Sectoral Emissions. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. https:// doi.org/10.18466/cbayarfbe.823265
  • Bossanyi, E. (1979). UK primary energy consumption and the changing structure of final demand. Energy Policy, 7(3), 253–258. https://doi.org/10.1016/0301-4215(79)90068-5
  • Boyd D., McDonald J.F., Ross M., & Hanson D.A. (1987). Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach. The Energy Journal, 8(2), 77–96.
  • Boyd, G. A., Hanson, D. A., & Sterner, T. (1988). Decomposition of changes in energy intensity. Energy Economics, 10(4), 309–312. https://doi.org/10.1016/0140-9883(88)90042-4
  • Boyd, G. A., & Roop, J. M. (2004). A Note on the Fisher Ideal Index Decomposition for Structural Change in Energy Intensity. EJ, 25(1). https://doi.org/10.5547/ISSN0195-6574-EJ-Vol25-No1-5
  • Chen, J., Gao, M., Li, D., Song, M., Xie, Q., & Zhou, J. (2020). Extended Yearly LMDI Approaches: A Case Study of Energy Consumption. Mathematical Problems in Engineering, 2020, 1–13. https://doi. org/10.1155/2020/9207896
  • Choi, K.-H., & Ang, B. W. (2003). Decomposition of aggregate energy intensity changes in two measures: ratio and difference. Energy Economics, 25(6), 615–624. https://doi.org/10.1016/S0140-9883(03)00038-0
  • Choi, K.-H., & Ang, B. W. (2012). Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis. Energy Economics, 34(1), 171–176. https://doi. org/10.1016/j.eneco.2011.04.011
  • Chung, H.-S., & Rhee, H.-C. (2001). A residual-free decomposition of the sources of carbon dioxide emissions: a case of the Korean industries. Energy, 26(1), 15–30. https://doi.org/10.1016/S0360- 5442(00)00045-1 Corsatea, T., Román, M., Amores, A., Neuwahl, F., Velázquez Afonso, A., Rueda-Cantuche, J., Arto, I., &
  • Lindner, S. (2019). World Input-Output Database Environmental Accounts : Update 2000-2016. Publications Office. https://doi.org/doi/10.2760/024036
  • Çermikli, H., & Öztürkler, H. (2009). Türkiye’de 1981-2000 döneminde sanayi kesiminde enerji tüketiminin ayrıştırılması. TİSK Akademi, 4(8), 63–79.
  • de Boer, P., & Rodrigues, J. F. D. (2020). Decomposition analysis: when to use which method? Economic Systems Research, 32(1), 1–28. https://doi.org/10.1080/09535.314.2019.1652571
  • Ediger, V. Ş., & Huvaz, O. (2006). Examining the sectoral energy use in Turkish economy (1980–2000) with the help of decomposition analysis. Energy Conversion and Management, 47(6), 732–745. https:// doi.org/10.1016/j.enconman.2005.05.022
  • Förster, H., Schumacher, K., de Cian, E., Hübler, M., Keppo, I., Mima, S., & Sands, R. D. (2013). European Energy Efficiency and Decarbonization Strategies Beyond 2030—A Sectoral Multi-Model Decomposition. Clim. Change Econ., 04(supp01), 1340004. https://doi.org/10.1142/S201.000.7813400046
  • Genty, A., Arto, I., & Neuwahl, F. (2012). Final Database of Environmental Satellite Accounts: Technical Report on Their Compilation.
  • Hankinson, G. A., & Rhys, J. M. W. (1983). Electricity consumption, electricity intensity and industrial structure. Energy Economics, 5(3), 146–152. https://doi.org/10.1016/0140-9883(83)90054-3
  • Hasanbeigi, A., Jiang, Z., & Price, L. (2014). Retrospective and prospective analysis of the trends of energy use in Chinese iron and steel industry. Journal of Cleaner Production, 74, 105–118. https://doi. org/10.1016/j.jclepro.2014.03.065
  • Hoekstra, R., & van den Bergh, J. C. J. M. (2003). Comparing structural decomposition analysis and index. Energy Economics, 25(1), 39–64. https://doi.org/10.1016/S0140-9883(02)00059-2
  • Howarth, R. B., Schipper, L., Duerr, P. A., & Strøm, S. (1991). Manufacturing energy use in eight OECD countries. Energy Economics, 13(2), 135–142. https://doi.org/10.1016/0140-9883(91)90046-3 IEA. (2021). Turkey 2021.
  • Isik, M., Ari, I., & Sarica, K. (2021). Challenges in the CO2 emissions of the Turkish power sector: Evidence from a two-level decomposition approach. Utilities Policy, 70, 101227. https://doi.org/10.1016/j. jup.2021.101227
  • Isik, M., Sarica, K., & Ari, I. (2020). Driving forces of Turkey’s transportation sector CO2 emissions: An LMDI approach. Transport Policy, 97, 210–219. https://doi.org/10.1016/j.tranpol.2020.07.006
  • Jenne, C. A., & Cattell, R. K. (1983). Structural change and energy efficiency in industry. Energy Economics, 5(2), 114–123. https://doi.org/10.1016/0140-9883(83)90018-X
  • Karakaya, E., Bostan, A., & Özçağ, M. (2019). Decomposition and decoupling analysis of energy-related carbon emissions in Turkey. Environmental Science and Pollution Research, 26(31), 32080–32091. https://doi.org/10.1007/s11356.019.06359-5
  • Karakaya, E., & Özçağ, A. G. M. (2003). Türkİye Açisindan Kyoto Protokolü’nün Değerlendİrİlmesİ Ve Ayriştirma (Decomposition) Yöntemİ İle Co2 Emİsyonu Belİrleyİcİlerİnİn Analİzİ. METU International Conference in Economics VII.
  • Köne, A. Ç., & Büke, T. (2016). The impact of changing energy mix of Turkey on CO2 emission intensities. Environment Protection Engineering, 42(3), 85–93.
  • Köne, A. Ç., & Büke, T. (2019). Factor analysis of projected carbon dioxide emissions according to the IPCC based sustainable emission scenario in Turkey. Renewable Energy, 133, 914–918. https://doi. org/10.1016/j.renene.2018.10.099
  • Kumbaroğlu, G. (2011). A sectoral decomposition analysis of Turkish CO2 emissions over 1990–2007. Energy, 36(5), 2419–2433. https://doi.org/10.1016/j.energy.2011.01.027
  • Lescaroux, F. (2013). Industrial energy demand, a forecasting model based on an index decomposition of structural and efficiency effects. OPEC Energy Review, 37(4), 477–502. https://doi.org/10.1111/ opec.12023
  • Lise, W. (2006). Decomposition of CO2 emissions over 1980–2003 in Turkey. Energy Policy, 34(14), 1841– 1852. https://doi.org/10.1016/j.enpol.2004.12.021
  • Liu, F. L., & Ang, B. W. (2003). Eight methods for decomposing the aggregate energy-intensity of industry. Applied Energy, 76(1–3), 15–23. https://doi.org/10.1016/S0306-2619(03)00043-6
  • Liu, X. Q., Ang, B. W., & Ong, H. L. (1992). The Application of the Divisia Index to the Decomposition of Changes in Industrial Energy Consumption. EJ, 13(4). https://doi.org/10.5547/ISSN0195-6574-EJVol13- No4-9
  • MENR. (2022). National Energy Balance Tables 1990-2022. In Reports of Directorate General of Energy Affairs. https://enerji.gov.tr/eigm-raporlari
  • O’Mahony, T. (2010). Energy-Related Carbon Emissions in Ireland: Scenarios to 2020. https://doi. org/10.21427/D79895
  • Özçağ, M., Yılmaz, B., & Sofuoğlu, E. (2017). Türkiye’de Sanayi ve Tarım Sektörlerinde Seragazı Emisyonlarının Belirleyicileri: İndeks Ayrıştırma Analizi . Uluslararası İlişkiler, 14(54), 175–195.
  • Özşahin, G. (2019). Decomposition of Industrial Energy Consumption in Turkey. Journal of Research in Economics, 3(2), 192–211. https://doi.org/10.35333/JORE.2019.55 Index Decomposition Analysis and Energy Consumption of Turkey: 2000-2014 133
  • Park, S.-H. (1992). Decomposition of industrial energy consumption: An alternative method. Energy Economics, 14(4), 265–270. https://doi.org/10.1016/0140-9883(92)90031-8
  • PSB. (2019). 11. Development Plan of Turkey (2019-2023). Turkish Presidency of Strategy and Budget .
  • Reitler, W., Rudolph, M., & Schaefer, H. (1987). Analysis of the factors influencing energy consumption in industry. Energy Economics, 9(3), 145–148. https://doi.org/10.1016/0140-9883(87)90019-3
  • Rüstemoğlu, H. (2016). Ekonomik Büyümenin Çevresel Maliyeti: Türkiye ve İran Ölçeğinde CO2 Emisyonlarının Belirleyicileri. Journal of the Human & Social Science Researches, 5(7).
  • Rüstemoğlu, H. (2021). Environmental analysis of Turkey’s aggregated and sector-level CO2 emissions. Environmental Science and Pollution Research, 28(45), 63933–63944. https://doi.org/10.1007/ s11356.020.11895-6
  • Saygin, D., Wetzels, W., Worrell, E., & Patel, M. K. (2013). Linking historic developments and future scenarios of industrial energy use in the Netherlands between 1993 and 2040. Energy Efficiency, 6(2), 341–368. https://doi.org/10.1007/s12053.012.9172-8
  • Selçuk, I. Ş. (2018). Energy Efficiency of Turkish Energy Sector: Extended Analysis of Logarithmic Mean Divisia Index Decomposition. Sosyoekonomi, 127–145. https://doi.org/10.17233/ sosyoekonomi.2018.03.07
  • Shenning, Q. (2020). The Decomposition Analysis of Carbon Emissions: Theoretical Basis, Methods and Their Evaluations. Chn. J. Urb. Environ.Stud, 08(04), 2050020. https://doi.org/10.1142/ S234.574.8120500207
  • Smit, T. A. B., Hu, J., & Harmsen, R. (2014). Unravelling projected energy savings in 2020 of EU Member States using decomposition analyses. Energy Policy, 74, 271–285. https://doi.org/10.1016/j. enpol.2014.08.030
  • Su, B., & Ang, B. W. (2012). Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Economics, 34(1), 177–188. https://doi.org/10.1016/j. eneco.2011.10.009
  • Sun, J. W. (1998). Changes in energy consumption and energy intensity: A complete decomposition model. Energy Economics, 20(1), 85–100. https://doi.org/10.1016/S0140-9883(97)00012-1
  • Timmer, M. P., Dietzenbacher, E., Los, B. , Stehrer R., & de Vries, G. J. (2015). An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production. Review of International Economics, 23, 575–605.
  • Tunç, İ. G., Türüt-Aşık, S., & Akbostancı, E. (2009). A decomposition analysis of CO2 emissions from energy use: Turkish case. Energy Policy, 37(11), 4689–4699. https://doi.org/10.1016/j.enpol.2009.06.019
  • Türköz, K. (2021). Türkiye’de Sektörel Enerji Kullanımındaki Değişimlerin İtici Güçleri: Ayrıştırma Analizi. MANAS Sosyal Araştırmalar Dergisi, 1038–1052. https://doi.org/10.33206/mjss.853348
  • Wang, H., Ang, B. W., & Su, B. (2017a). Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues. Energy, 123, 47–63. https://doi.org/10.1016/j. energy.2017.01.141
  • Wang, H., Ang, B. W., & Su, B. (2017b). Assessing drivers of economy-wide energy use and emissions: IDA versus SDA. Energy Policy, 107, 585–599. https://doi.org/10.1016/j.enpol.2017.05.034 World Bank. (2022). World Development Indicators.
  • Xu, X. Y., & Ang, B. W. (2014). Multilevel index decomposition analysis: Approaches and application. Energy Economics, 44, 375–382. https://doi.org/10.1016/j.eneco.2014.05.002
  • Yilmaz, M., & Atak, M. (2010). Decomposition Analysis of Sectoral Energy Consumption in Turkey. Energy Sources, Part B: Economics, Planning, and Policy, 5(2), 224–231. https://doi. org/10.1080/155.672.40802533203
  • Yılmaz, A., Ürüt Kelleci, S., & Bostan, A. (2016). Türkiye İmalat Sanayiinde Enerji Tüketminin İncelenmesi: Ayrıştırma Analizi. . . Uşak Üniversitesi Sosyal Bilimler Dergisi, 9(1), 205-224 .
Year 2022, Volume: 6 Issue: 2, 107 - 134, 15.10.2022

Abstract

References

  • Alkan, A., & Binatlı, A. O. (2021). Is Production or Consumption the Determiner? Sources of Turkey’s CO2 Emissions between 1990-2015 and Policy Implications. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 359–378. https://doi.org/10.17065/huniibf.823845
  • Ang, B. W. (1994). Decomposition of industrial energy consumption-The energy intensity approach. Energy Economics, 16(3), 163–174. https://doi.org/10.1016/0140-9883(94)90030-2
  • Ang, B. W. (1995a). Decomposition methodology in industrial energy demand analysis. Energy, 20(11), 1081–1095. https://doi.org/10.1016/0360-5442(95)00068-R
  • Ang, B. W. (1995b). Multilevel decomposition of industrial energy consumption. Energy Economics, 17(1), 39–51. https://doi.org/10.1016/0140-9883(95)98905-J
  • Ang, B. W. (2004a). Decomposition Analysis Applied to Energy. In C. J. Cleveland & R. U. Ayres (Eds.), Encyclopedia of Energy: Vol. I (pp. 761–769). Elsevier Academic Press.
  • Ang, B. W. (2004b). Decomposition analysis for policymaking in energy: which is the preferred method? Energy Policy, 32(9), 1131–1139. https://doi.org/10.1016/S0301-4215(03)00076-4
  • Ang, B. W. (2015). LMDI decomposition approach: A guide for implementation. Energy Policy, 86, 233–238. https://doi.org/10.1016/j.enpol.2015.07.007
  • Ang, B. W., & Choi, K.-H. (1997). Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method. The Energy Journal, 18(3), 59–73.
  • Ang, B. W., & Goh, T. (2019a). Routledge handbook of energy economics (U. Soytaş & R. Sarı, Eds.). Routledge.
  • Ang, B. W., & Goh, T. (2019b). Index decomposition analysis for comparing emission scenarios: Applications and challenges. Energy Economics, 83, 74–87. https://doi.org/10.1016/j.eneco.2019.06.013
  • Ang, B. W., Huang, H. C., & Mu, A. R. (2009). Properties and linkages of some index decomposition analysis methods. Energy Policy, 37(11), 4624–4632. https://doi.org/10.1016/j.enpol.2009.06.017
  • Ang, B. W., & Lee, S. Y. (1994). Decomposition of industrial energy consumption: Some methodological and application issues. Energy Economics, 16(2), 83–92. https://doi.org/10.1016/0140-9883(94)90001-9
  • Ang, B. W., & Liu, F. L. (2001). A new energy decomposition method: perfect in decomposition and consistent in aggregation. Energy, 26(6), 537–548. https://doi.org/10.1016/S0360-5442(01)00022-6
  • Ang, B. W., Liu, F. L., & Chew, E. P. (2003). Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 31(14), 1561–1566. https://doi.org/10.1016/S0301-4215(02)00206-9
  • Ang, B. W., Liu, F. L., & Chung, H.-S. (2004). A generalized Fisher index approach to energy decomposition analysis. Energy Economics, 26(5), 757–763. https://doi.org/10.1016/j.eneco.2004.02.002
  • Ang, B. W., & Liu, N. (2007a). Handling zero values in the logarithmic mean Divisia index decomposition approach. Energy Policy, 35(1), 238–246. https://doi.org/10.1016/j.enpol.2005.11.001
  • Ang, B. W., & Liu, N. (2007b). Negative-value problems of the logarithmic mean Divisia index decomposition approach. Energy Policy, 35(1), 739–742. https://doi.org/10.1016/j.enpol.2005.12.004
  • Ang, B. W., & Wang, H. (2015). Index decomposition analysis with multidimensional and multilevel energy data. Energy Economics, 51, 67–76. https://doi.org/10.1016/j.eneco.2015.06.004
  • Ang, B. W., Zhang, F., & Choi, K. (1998). Factorizing changes in energy and environmental indicators through decomposition. Energy, 23(6), 489–495. https://doi.org/10.1016/S0360-5442(98)00016-4
  • Ang, B. W., & Zhang, F. Q. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12), 1149–1176. https://doi.org/10.1016/S0360-5442(00)00039-6
  • Bektaş, A. (2021a). Decomposıtıon of Energy-Related Co2 Emission Over 1998-2017 In Turkey. Environmental Engineering & Management Journal (EEMJ), , 20(12), 1981–1998. Index Decomposition Analysis and Energy Consumption of Turkey: 2000-2014 131
  • Bektaş, A. (2021b). The Impact of European Green Deal on Turkey’s Iron and Steel Industry: Decomposition Analysis of Energy-Related Sectoral Emissions. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. https:// doi.org/10.18466/cbayarfbe.823265
  • Bossanyi, E. (1979). UK primary energy consumption and the changing structure of final demand. Energy Policy, 7(3), 253–258. https://doi.org/10.1016/0301-4215(79)90068-5
  • Boyd D., McDonald J.F., Ross M., & Hanson D.A. (1987). Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach. The Energy Journal, 8(2), 77–96.
  • Boyd, G. A., Hanson, D. A., & Sterner, T. (1988). Decomposition of changes in energy intensity. Energy Economics, 10(4), 309–312. https://doi.org/10.1016/0140-9883(88)90042-4
  • Boyd, G. A., & Roop, J. M. (2004). A Note on the Fisher Ideal Index Decomposition for Structural Change in Energy Intensity. EJ, 25(1). https://doi.org/10.5547/ISSN0195-6574-EJ-Vol25-No1-5
  • Chen, J., Gao, M., Li, D., Song, M., Xie, Q., & Zhou, J. (2020). Extended Yearly LMDI Approaches: A Case Study of Energy Consumption. Mathematical Problems in Engineering, 2020, 1–13. https://doi. org/10.1155/2020/9207896
  • Choi, K.-H., & Ang, B. W. (2003). Decomposition of aggregate energy intensity changes in two measures: ratio and difference. Energy Economics, 25(6), 615–624. https://doi.org/10.1016/S0140-9883(03)00038-0
  • Choi, K.-H., & Ang, B. W. (2012). Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis. Energy Economics, 34(1), 171–176. https://doi. org/10.1016/j.eneco.2011.04.011
  • Chung, H.-S., & Rhee, H.-C. (2001). A residual-free decomposition of the sources of carbon dioxide emissions: a case of the Korean industries. Energy, 26(1), 15–30. https://doi.org/10.1016/S0360- 5442(00)00045-1 Corsatea, T., Román, M., Amores, A., Neuwahl, F., Velázquez Afonso, A., Rueda-Cantuche, J., Arto, I., &
  • Lindner, S. (2019). World Input-Output Database Environmental Accounts : Update 2000-2016. Publications Office. https://doi.org/doi/10.2760/024036
  • Çermikli, H., & Öztürkler, H. (2009). Türkiye’de 1981-2000 döneminde sanayi kesiminde enerji tüketiminin ayrıştırılması. TİSK Akademi, 4(8), 63–79.
  • de Boer, P., & Rodrigues, J. F. D. (2020). Decomposition analysis: when to use which method? Economic Systems Research, 32(1), 1–28. https://doi.org/10.1080/09535.314.2019.1652571
  • Ediger, V. Ş., & Huvaz, O. (2006). Examining the sectoral energy use in Turkish economy (1980–2000) with the help of decomposition analysis. Energy Conversion and Management, 47(6), 732–745. https:// doi.org/10.1016/j.enconman.2005.05.022
  • Förster, H., Schumacher, K., de Cian, E., Hübler, M., Keppo, I., Mima, S., & Sands, R. D. (2013). European Energy Efficiency and Decarbonization Strategies Beyond 2030—A Sectoral Multi-Model Decomposition. Clim. Change Econ., 04(supp01), 1340004. https://doi.org/10.1142/S201.000.7813400046
  • Genty, A., Arto, I., & Neuwahl, F. (2012). Final Database of Environmental Satellite Accounts: Technical Report on Their Compilation.
  • Hankinson, G. A., & Rhys, J. M. W. (1983). Electricity consumption, electricity intensity and industrial structure. Energy Economics, 5(3), 146–152. https://doi.org/10.1016/0140-9883(83)90054-3
  • Hasanbeigi, A., Jiang, Z., & Price, L. (2014). Retrospective and prospective analysis of the trends of energy use in Chinese iron and steel industry. Journal of Cleaner Production, 74, 105–118. https://doi. org/10.1016/j.jclepro.2014.03.065
  • Hoekstra, R., & van den Bergh, J. C. J. M. (2003). Comparing structural decomposition analysis and index. Energy Economics, 25(1), 39–64. https://doi.org/10.1016/S0140-9883(02)00059-2
  • Howarth, R. B., Schipper, L., Duerr, P. A., & Strøm, S. (1991). Manufacturing energy use in eight OECD countries. Energy Economics, 13(2), 135–142. https://doi.org/10.1016/0140-9883(91)90046-3 IEA. (2021). Turkey 2021.
  • Isik, M., Ari, I., & Sarica, K. (2021). Challenges in the CO2 emissions of the Turkish power sector: Evidence from a two-level decomposition approach. Utilities Policy, 70, 101227. https://doi.org/10.1016/j. jup.2021.101227
  • Isik, M., Sarica, K., & Ari, I. (2020). Driving forces of Turkey’s transportation sector CO2 emissions: An LMDI approach. Transport Policy, 97, 210–219. https://doi.org/10.1016/j.tranpol.2020.07.006
  • Jenne, C. A., & Cattell, R. K. (1983). Structural change and energy efficiency in industry. Energy Economics, 5(2), 114–123. https://doi.org/10.1016/0140-9883(83)90018-X
  • Karakaya, E., Bostan, A., & Özçağ, M. (2019). Decomposition and decoupling analysis of energy-related carbon emissions in Turkey. Environmental Science and Pollution Research, 26(31), 32080–32091. https://doi.org/10.1007/s11356.019.06359-5
  • Karakaya, E., & Özçağ, A. G. M. (2003). Türkİye Açisindan Kyoto Protokolü’nün Değerlendİrİlmesİ Ve Ayriştirma (Decomposition) Yöntemİ İle Co2 Emİsyonu Belİrleyİcİlerİnİn Analİzİ. METU International Conference in Economics VII.
  • Köne, A. Ç., & Büke, T. (2016). The impact of changing energy mix of Turkey on CO2 emission intensities. Environment Protection Engineering, 42(3), 85–93.
  • Köne, A. Ç., & Büke, T. (2019). Factor analysis of projected carbon dioxide emissions according to the IPCC based sustainable emission scenario in Turkey. Renewable Energy, 133, 914–918. https://doi. org/10.1016/j.renene.2018.10.099
  • Kumbaroğlu, G. (2011). A sectoral decomposition analysis of Turkish CO2 emissions over 1990–2007. Energy, 36(5), 2419–2433. https://doi.org/10.1016/j.energy.2011.01.027
  • Lescaroux, F. (2013). Industrial energy demand, a forecasting model based on an index decomposition of structural and efficiency effects. OPEC Energy Review, 37(4), 477–502. https://doi.org/10.1111/ opec.12023
  • Lise, W. (2006). Decomposition of CO2 emissions over 1980–2003 in Turkey. Energy Policy, 34(14), 1841– 1852. https://doi.org/10.1016/j.enpol.2004.12.021
  • Liu, F. L., & Ang, B. W. (2003). Eight methods for decomposing the aggregate energy-intensity of industry. Applied Energy, 76(1–3), 15–23. https://doi.org/10.1016/S0306-2619(03)00043-6
  • Liu, X. Q., Ang, B. W., & Ong, H. L. (1992). The Application of the Divisia Index to the Decomposition of Changes in Industrial Energy Consumption. EJ, 13(4). https://doi.org/10.5547/ISSN0195-6574-EJVol13- No4-9
  • MENR. (2022). National Energy Balance Tables 1990-2022. In Reports of Directorate General of Energy Affairs. https://enerji.gov.tr/eigm-raporlari
  • O’Mahony, T. (2010). Energy-Related Carbon Emissions in Ireland: Scenarios to 2020. https://doi. org/10.21427/D79895
  • Özçağ, M., Yılmaz, B., & Sofuoğlu, E. (2017). Türkiye’de Sanayi ve Tarım Sektörlerinde Seragazı Emisyonlarının Belirleyicileri: İndeks Ayrıştırma Analizi . Uluslararası İlişkiler, 14(54), 175–195.
  • Özşahin, G. (2019). Decomposition of Industrial Energy Consumption in Turkey. Journal of Research in Economics, 3(2), 192–211. https://doi.org/10.35333/JORE.2019.55 Index Decomposition Analysis and Energy Consumption of Turkey: 2000-2014 133
  • Park, S.-H. (1992). Decomposition of industrial energy consumption: An alternative method. Energy Economics, 14(4), 265–270. https://doi.org/10.1016/0140-9883(92)90031-8
  • PSB. (2019). 11. Development Plan of Turkey (2019-2023). Turkish Presidency of Strategy and Budget .
  • Reitler, W., Rudolph, M., & Schaefer, H. (1987). Analysis of the factors influencing energy consumption in industry. Energy Economics, 9(3), 145–148. https://doi.org/10.1016/0140-9883(87)90019-3
  • Rüstemoğlu, H. (2016). Ekonomik Büyümenin Çevresel Maliyeti: Türkiye ve İran Ölçeğinde CO2 Emisyonlarının Belirleyicileri. Journal of the Human & Social Science Researches, 5(7).
  • Rüstemoğlu, H. (2021). Environmental analysis of Turkey’s aggregated and sector-level CO2 emissions. Environmental Science and Pollution Research, 28(45), 63933–63944. https://doi.org/10.1007/ s11356.020.11895-6
  • Saygin, D., Wetzels, W., Worrell, E., & Patel, M. K. (2013). Linking historic developments and future scenarios of industrial energy use in the Netherlands between 1993 and 2040. Energy Efficiency, 6(2), 341–368. https://doi.org/10.1007/s12053.012.9172-8
  • Selçuk, I. Ş. (2018). Energy Efficiency of Turkish Energy Sector: Extended Analysis of Logarithmic Mean Divisia Index Decomposition. Sosyoekonomi, 127–145. https://doi.org/10.17233/ sosyoekonomi.2018.03.07
  • Shenning, Q. (2020). The Decomposition Analysis of Carbon Emissions: Theoretical Basis, Methods and Their Evaluations. Chn. J. Urb. Environ.Stud, 08(04), 2050020. https://doi.org/10.1142/ S234.574.8120500207
  • Smit, T. A. B., Hu, J., & Harmsen, R. (2014). Unravelling projected energy savings in 2020 of EU Member States using decomposition analyses. Energy Policy, 74, 271–285. https://doi.org/10.1016/j. enpol.2014.08.030
  • Su, B., & Ang, B. W. (2012). Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Economics, 34(1), 177–188. https://doi.org/10.1016/j. eneco.2011.10.009
  • Sun, J. W. (1998). Changes in energy consumption and energy intensity: A complete decomposition model. Energy Economics, 20(1), 85–100. https://doi.org/10.1016/S0140-9883(97)00012-1
  • Timmer, M. P., Dietzenbacher, E., Los, B. , Stehrer R., & de Vries, G. J. (2015). An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production. Review of International Economics, 23, 575–605.
  • Tunç, İ. G., Türüt-Aşık, S., & Akbostancı, E. (2009). A decomposition analysis of CO2 emissions from energy use: Turkish case. Energy Policy, 37(11), 4689–4699. https://doi.org/10.1016/j.enpol.2009.06.019
  • Türköz, K. (2021). Türkiye’de Sektörel Enerji Kullanımındaki Değişimlerin İtici Güçleri: Ayrıştırma Analizi. MANAS Sosyal Araştırmalar Dergisi, 1038–1052. https://doi.org/10.33206/mjss.853348
  • Wang, H., Ang, B. W., & Su, B. (2017a). Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues. Energy, 123, 47–63. https://doi.org/10.1016/j. energy.2017.01.141
  • Wang, H., Ang, B. W., & Su, B. (2017b). Assessing drivers of economy-wide energy use and emissions: IDA versus SDA. Energy Policy, 107, 585–599. https://doi.org/10.1016/j.enpol.2017.05.034 World Bank. (2022). World Development Indicators.
  • Xu, X. Y., & Ang, B. W. (2014). Multilevel index decomposition analysis: Approaches and application. Energy Economics, 44, 375–382. https://doi.org/10.1016/j.eneco.2014.05.002
  • Yilmaz, M., & Atak, M. (2010). Decomposition Analysis of Sectoral Energy Consumption in Turkey. Energy Sources, Part B: Economics, Planning, and Policy, 5(2), 224–231. https://doi. org/10.1080/155.672.40802533203
  • Yılmaz, A., Ürüt Kelleci, S., & Bostan, A. (2016). Türkiye İmalat Sanayiinde Enerji Tüketminin İncelenmesi: Ayrıştırma Analizi. . . Uşak Üniversitesi Sosyal Bilimler Dergisi, 9(1), 205-224 .
There are 75 citations in total.

Details

Primary Language English
Subjects Economics
Journal Section Makaleler
Authors

Aynur Yılmaz Ataman This is me 0000-0001-6678-7908

Publication Date October 15, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Yılmaz Ataman, A. (2022). INDEX DECOMPOSITION ANALYSIS AND ENERGY CONSUMPTION OF TURKEY: 2000-2014. Journal of Research in Economics, 6(2), 107-134.