Research Article
BibTex RIS Cite

Golden delicious L. Çeşidi Elmanın Kuruma Özelliklerine Ön İşlemlerin Etkisi

Year 2023, , 374 - 386, 22.05.2023
https://doi.org/10.33462/jotaf.1117872

Abstract

Elma (Malus domestica), gülgiller (Rosaceae) familyasından kültürü yapılan bir tür olup taze olarak tüketiminin yanında kurutulup meyve ve cips olarakta tüketimi son yıllarda daha fazla popüler hale gelmiştir. Ancak yapılan kurutma işlemlerinde enerji ve kalite özellikleri dikkate alınarak uygun kurutma şartlarının belirlenmesi önemlidir. Bu çalışmada, bazı kurutma ön işlemleri (sitrik asit, potasyum karbonat, vakum impregnasyon) Golden delicious L. çeşidi elma dilimlerine uygulayarak kurutma işleminin enerji tüketimini azaltmak ve örneklerin fiziko-kimyasal özelliklerinin korunması amaçlanmıştır. Elma dilimleri sabit 70 ºC sıcaklıkta 3.98±0.06’dan 0.06±0.019 g nem g kuru madde-1 değerine kadar kurutulmuştur. Çalışmada, en kısa kuruma süresi 5.5. saat olarak tespit edilirken en uzun kuruma süresi ise 9.5 saat olarak belirlenmiştir. En iyi tahmin eden matematiksel model Wang Sing olarak belirlenmiştir. Kurutma işlemlerinin efektif difüzyon değerlerinin 1.03x10-5-6.67x10-6 m2 s-1 arasında değiştiği tespit edilmiştir. Sitrik asit çözeltisine bandırıldıktan sonra kurutulan örneklerin efektif difüzyon değerinin en yüksek olduğu bulunmuştur. Tazenin renk değerlerini en iyi (P<0.05) sitrik asit çözeltisine bandırıldıktan sonra kurutulan örnekler muhafaza ettiği belirlenmiştir. En düşük toplam enerji, özgül enerji tüketimi (SEC) ve buharlaşma gizli ısı değerleri sitrik asit çözeltisine bandırılan örneklerin kurutulması işleminde belirlenmiştir. Bu değerler sırasıyla 0.766 kWh, 247.41 kWh kg-1, 2.02 kWh olarak bulunmuştur. En yüksek özgül nem çekme oranı (SMER) yine sitrik asit çözeltisine bandırılan örneklerin kurutulmasında ve 0.00404 kg kWh-1 olarak tespit edilmiştir. Elde edilen bulgular doğrultusunda Golden delicious L. çeşidi kurutulmuş elma dilimlerinin optimum enerji parametreleri ve fiziko-kimyasal özellikleri göz önüne alındığında belirlenmesinden dolayı sitrik asit çözeltisine bandırdıktan sonra kurutulması önerilmektedir. Vakum impregnasyon ön işlemi uygulandıktan sonra kurutulan örneklerde bazı renk değerleri tazeye istatistiksel açıdan daha uygun olduğu belirlenmesinden dolayı bundan sonraki çalışmada sitrik asit+vakum impregnasyon ön işleminin uygulaması önerilmektedir.

References

  • Akpınar, E. K., Biçer, Y. and Çetinkaya, F. (2005). Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. Journal of Food Engineering, 75(3): 308-315.
  • Aktaş, T., Orak, H. H., Şahin, F. H. and Ekinci, N. (2013). Effects of different drying methods on drying kinetics and color parameters of strawberry tree (Arbutus unedo L.) fruit. Journal of Tekirdag Agricultural Faculty, 10(2): 1-12.
  • Alemrajabi, A. A., Rezaee, F., Mirhosseini, M. and Esehaghbeygi, A. (2012). Comparative evaluation of the effects of electrohydrodynamic, oven, and ambient air on carrot cylindrical slices during drying proces. Drying Technology, 30: 88–96.
  • Anonim (2022). e-cerez. https://www.e-cerez.com/kategori/kuru-meyve?. (Erişim Tarihi: 19/04/2022).
  • Beigi, M. (2016). Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Science and Technology, 36(1): 374-382.
  • Boateng, I. D. and Yang, X. M. (2020). Effect of different drying methods on product quality, bioactive and toxic components of Ginkgo biloba L. seed. Journal of the Science of Food and Agriculture, 101(8): 3290-3297.
  • Bora, G. C., Pathak, R., Ahmadi, M. and Mistry, P. (2018). Image processing analysis to track colour changes on apple and correlate to moisture content in drying stages. Food Quality and Safety, 2(2): 105–110.
  • Corzo, O., Bracho, N. and Alvarez, C. (2008). Water effective diffusion coefficient of mango slices at different maturity stages during air drying. Journal of Food Engineering, 87(4): 479-484.
  • FAO (2011). Energy-smart food for people and climate. (Erişim Tarihi: 02/03/2017).
  • Filippin, A. P., Filho, L. M., Fadel, V. and Mauro, M. A. (2018). Thermal intermittent drying of apples and its effects on energy consumption. Drying Technology, 36(14): 1662-1677.
  • Jena, S. and Das, H. (2007). Modeling for vacuum drying characteristics of coconut presscake. Journal of Food Engineering, 79: 92-99.
  • Jha, A. and Tripathy, P. P. (2017). Clean energy technologies for sustainable food security. Water-Food-Energy Nexus Process Technol Challenges 1: 197–219.
  • Jha, A. and Tripathy, P. P. (2021). Recent advancements in design, application, and simulation studies of hybrid solar drying technology. Food Engineering Reviews, 13: 375–410.
  • Kaleemullah, S. and Kailappan, R. (2007). Latent heat of vaporization of moisture from red chillies. International Journal of Food Properties, 8(2): 199-205.
  • Karakaya, E. ve Kızıloğlu, S. (2021). TRB1 Bölgesinde (Bingöl, Elazığ ve Malatya illeri) elma yetiştiriciliğinin mevcut durumu. Türk Tarım ve Doğa Bilimleri Dergisi, 8(2): 470–483.
  • Kumar, C., Millar, G. J. and Karim, M. A. (2015). Effective diffusivity and evaporative cooling in convective drying of food material. Drying Technology, 33(2): 227-237.
  • Lammerskitten, A., Mykhailyk, V., Wiktor, A., Toepfl, S., Nowacka, M., Bialik, M., Czyewski, J., Witrowa Rjchert, D. and Parniakov, O. (2019). Impact of pulsed electric fields on physical properties of freeze-dried apple tissue. Innovative Food Science & Emerging Technologies, 57: 1466-8564.
  • Lewicki, P. P. and Das, Gupta, D. K. (1995). Osmotic Dehydration of Fruit and Vegetables in Handbook of Industrial Drying. Vol. 1, 2nd Edition, Ed. A.S. Mujumdar, Marcel Dekker, New York, Pp. 691–713.
  • Lewis, W. K. (1921). The rate of drying of solid materials. Industrial Engineering Chemistry, 13: 427-432.
  • Moffat, R. J. (1988). Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1(1): 3–17.
  • Morais, R. M. S. C., Morais, A. M. M. B., Dammak, I., Bonilla, J., Sobral, P. J. A., Laguerre, J. C., Afonso, M. J. and Ramalhosa, E. C. D. (2018). Functional Dehydrated Foods for Health Preservation. Journal of Food Quality, 2018(1): 1-29.
  • Motevali, A., Abbaszadeh, A., Minaei, S., Khoshtaghaza, M. H. and Ghobadian, B. (2012). Effective moisture diffusivity, activation energy and energy consumption in thin-layer drying of jujube (Zizyphus jujube Mill). Journal of Agricultural Science and Technology, 14(3): 523-532.
  • Mujumdar, A. S. and Law, C. L. (2010). Drying technology: trends and applications in postharvest processing. Food Bioprocess Technology, 3: 843-852.
  • Nadi, F. and Tzempelikos, D. (2018). Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters. Heat and Mass Transfer, 54: 1853–1866.
  • Nadian, M. H., Rafiee, S. and Golzarian, M. Z. (2019). Real-time monitoring of color variations of apple slices and effects of pre-treatment and drying air temperature. Journal of Food Measurement and Characterization, 10: 493–506.
  • Önal, B., Adiletta, G., Crescitelli, A., Matteo, A. D. and Russo, P. (2019). Optimization of hot air drying temperature combined with pre-treatment to improve physico-chemical and nutritional quality of ‘Annurca’ apple. Food and Bioproducts Processing, 115(3): 87-99.
  • Pixton, S. W. and Warburton, S. (1973). Determination of moisture content and equilibrium relative humidity of dried fruit-Sultanas. Journal of Stored Products Research, 8(4): 263-270.
  • Purohit, P., Kumar, A. and Kandpal. T. C. (2006). Solar drying vs. open sun drying: A framework for financial evaluation. Solar Energy, 80(12): 1568–1579.
  • Ramallo, L. A. and Mascheroni, R. H. (2012). Quality evoluation of pineapple fruit during drying process. Food and Bioproducts Processing, 99: 275-283.
  • Rojas, M. L., Augusto, P. E. D. and Carcel, J. A. (2021). Combining ethanol pre-treatment and ultrasound-assisted drying to enhance apple chips by fortification with black carrot anthocyanin. Journal of Food and Agriculture, 101(5): 2078–2089.
  • Sharma, A., Chen, C. R. ve Lan, N. V. (2009). Solar-energy drying systems: A review. Renewable Sustainable Energy Review. 13 (6–7): 1185–1210.
  • Soomro, A. H., Miano, T. F., Marri, A., Kumar, D., Khaskheli, G. S., Arain, U. F. and Baloch, A. B. (2020). Application of pretreatments on banana slices for improving drying characteristics. Food Science and Quality Management, 103: 35-41.
  • Surendhar, A., Sivasubramanian, V., Vidhyeswari, D. and Deepanraj, B. (2019). Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices. Journal of Thermal Analysis and Calorimetry, 136: 185–197.
  • Şahin, F. H., Ülger, P., Aktaş, T. ve Orak, H. H. (2012). Farklı önişlemlerin ve vakum kurutma yönteminin domatesin kuruma karakteristikleri ve kalite kriterleri üzerine etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 9(1): 15-25.
  • Tan, M., Chua, K. J., Mujumdar, A. S. and Chou, S. K. (2001). Effect of osmotic pre-treatment and infrared radiation of drying rate and color changes during drying of potato and pineapple. Drying Technology, 19(9): 2193-2207.
  • Taşkın, O., İzli, G. and İzli, N. (2021). Physicochemical and morphological properties of european cranberrybush powder manufactured by freeze drying. International Journal of Fruit Science, 21(1): 1008-1017.
  • Tinello, F., Mihaylova, D. and Lante, A. (2018). Effect of dipping pre-treatment with unripe grape juice on dried “Golden Delicious” apple slices. Food and Bioprocess Technology, 11: 2275–2285.
  • Wang, C. Y. and Singh, R. P. (1978). A Single Layer Drying Equation for Rough Rice. ASAE Paper No: 78-3001, ASAE, St. Joseph, MI.
  • Winiczenko, R., Kaleta, A. and Gornicki, K. (2021). Application of a MOGA algorithm and ANN in the optimization of apple drying and rehydration processes. Processes, 9(8): 1415.
  • Yan, J. K., Wu, L. X., Qiao, Z. R., Cai, W. D. and Ma, H. L. (2019). Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices. Food Chemical, 271: 588– 596.

Effect of Pretreatment on Drying Properties of Golden delicious L. Apple

Year 2023, , 374 - 386, 22.05.2023
https://doi.org/10.33462/jotaf.1117872

Abstract

Apple (Malus domestica) is a cultured species from the rosaceae (Rosaceae) family, and its consumption as fresh as well as dried fruit and chips has become more popular in recent years. However, it is important to determine the appropriate drying conditions in the drying processes, taking into account the energy and quality characteristics. In this study, it was aimed to reduce the energy consumption of the drying process and to preserve the physico-chemical properties of the samples by applying some drying pretreatments (citric acid, potassium carbonate, vacuum impregnation) to apple slices of Golden delicious L. Apple slices were dried at a constant temperature of 70 ºC from 3.98±0.06 to 0.06±0.019 g moisture g dry matter-1. In the study, the shortest drying time was 5.5. The longest drying time was determined as 9.5 hours. The best predictive mathematical model was determined as Wang Sing. It has been determined that the effective diffusion values of the drying processes vary between 1.03x10-5-6.67x10-6 m2 s-1. It was found that the effective diffusion value of the dried samples after dipping in citric acid solution was the highest. It was determined that the fresh color values were preserved best (P<0.05) for the dried samples after dipping in citric acid solution. The lowest total energy, specific energy consumption (SEC) and latent heat of evaporation values were determined in the drying process of the samples dipped in citric acid solution. These values were found as 0.766 kWh, 247.41 kWh kg-1, 2.02 kWh, respectively. The highest specific moisture absorption rate (SMER) was determined as 0.00404 kg kWh-1 in the drying of the samples dipped in citric acid solution. In line with the findings obtained Golden delicious L. variety is recommended to be dried after dipping in citric acid solution because the optimum energy parameters and physico-chemical properties of dried apple slices are determined. Since it has been determined that some color values are statistically more suitable for fresh in dried samples after vacuum impregnation pretreatment is applied, it is recommended to apply citric acid+vacuum impregnation pretreatment in the next study.

References

  • Akpınar, E. K., Biçer, Y. and Çetinkaya, F. (2005). Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. Journal of Food Engineering, 75(3): 308-315.
  • Aktaş, T., Orak, H. H., Şahin, F. H. and Ekinci, N. (2013). Effects of different drying methods on drying kinetics and color parameters of strawberry tree (Arbutus unedo L.) fruit. Journal of Tekirdag Agricultural Faculty, 10(2): 1-12.
  • Alemrajabi, A. A., Rezaee, F., Mirhosseini, M. and Esehaghbeygi, A. (2012). Comparative evaluation of the effects of electrohydrodynamic, oven, and ambient air on carrot cylindrical slices during drying proces. Drying Technology, 30: 88–96.
  • Anonim (2022). e-cerez. https://www.e-cerez.com/kategori/kuru-meyve?. (Erişim Tarihi: 19/04/2022).
  • Beigi, M. (2016). Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Science and Technology, 36(1): 374-382.
  • Boateng, I. D. and Yang, X. M. (2020). Effect of different drying methods on product quality, bioactive and toxic components of Ginkgo biloba L. seed. Journal of the Science of Food and Agriculture, 101(8): 3290-3297.
  • Bora, G. C., Pathak, R., Ahmadi, M. and Mistry, P. (2018). Image processing analysis to track colour changes on apple and correlate to moisture content in drying stages. Food Quality and Safety, 2(2): 105–110.
  • Corzo, O., Bracho, N. and Alvarez, C. (2008). Water effective diffusion coefficient of mango slices at different maturity stages during air drying. Journal of Food Engineering, 87(4): 479-484.
  • FAO (2011). Energy-smart food for people and climate. (Erişim Tarihi: 02/03/2017).
  • Filippin, A. P., Filho, L. M., Fadel, V. and Mauro, M. A. (2018). Thermal intermittent drying of apples and its effects on energy consumption. Drying Technology, 36(14): 1662-1677.
  • Jena, S. and Das, H. (2007). Modeling for vacuum drying characteristics of coconut presscake. Journal of Food Engineering, 79: 92-99.
  • Jha, A. and Tripathy, P. P. (2017). Clean energy technologies for sustainable food security. Water-Food-Energy Nexus Process Technol Challenges 1: 197–219.
  • Jha, A. and Tripathy, P. P. (2021). Recent advancements in design, application, and simulation studies of hybrid solar drying technology. Food Engineering Reviews, 13: 375–410.
  • Kaleemullah, S. and Kailappan, R. (2007). Latent heat of vaporization of moisture from red chillies. International Journal of Food Properties, 8(2): 199-205.
  • Karakaya, E. ve Kızıloğlu, S. (2021). TRB1 Bölgesinde (Bingöl, Elazığ ve Malatya illeri) elma yetiştiriciliğinin mevcut durumu. Türk Tarım ve Doğa Bilimleri Dergisi, 8(2): 470–483.
  • Kumar, C., Millar, G. J. and Karim, M. A. (2015). Effective diffusivity and evaporative cooling in convective drying of food material. Drying Technology, 33(2): 227-237.
  • Lammerskitten, A., Mykhailyk, V., Wiktor, A., Toepfl, S., Nowacka, M., Bialik, M., Czyewski, J., Witrowa Rjchert, D. and Parniakov, O. (2019). Impact of pulsed electric fields on physical properties of freeze-dried apple tissue. Innovative Food Science & Emerging Technologies, 57: 1466-8564.
  • Lewicki, P. P. and Das, Gupta, D. K. (1995). Osmotic Dehydration of Fruit and Vegetables in Handbook of Industrial Drying. Vol. 1, 2nd Edition, Ed. A.S. Mujumdar, Marcel Dekker, New York, Pp. 691–713.
  • Lewis, W. K. (1921). The rate of drying of solid materials. Industrial Engineering Chemistry, 13: 427-432.
  • Moffat, R. J. (1988). Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1(1): 3–17.
  • Morais, R. M. S. C., Morais, A. M. M. B., Dammak, I., Bonilla, J., Sobral, P. J. A., Laguerre, J. C., Afonso, M. J. and Ramalhosa, E. C. D. (2018). Functional Dehydrated Foods for Health Preservation. Journal of Food Quality, 2018(1): 1-29.
  • Motevali, A., Abbaszadeh, A., Minaei, S., Khoshtaghaza, M. H. and Ghobadian, B. (2012). Effective moisture diffusivity, activation energy and energy consumption in thin-layer drying of jujube (Zizyphus jujube Mill). Journal of Agricultural Science and Technology, 14(3): 523-532.
  • Mujumdar, A. S. and Law, C. L. (2010). Drying technology: trends and applications in postharvest processing. Food Bioprocess Technology, 3: 843-852.
  • Nadi, F. and Tzempelikos, D. (2018). Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters. Heat and Mass Transfer, 54: 1853–1866.
  • Nadian, M. H., Rafiee, S. and Golzarian, M. Z. (2019). Real-time monitoring of color variations of apple slices and effects of pre-treatment and drying air temperature. Journal of Food Measurement and Characterization, 10: 493–506.
  • Önal, B., Adiletta, G., Crescitelli, A., Matteo, A. D. and Russo, P. (2019). Optimization of hot air drying temperature combined with pre-treatment to improve physico-chemical and nutritional quality of ‘Annurca’ apple. Food and Bioproducts Processing, 115(3): 87-99.
  • Pixton, S. W. and Warburton, S. (1973). Determination of moisture content and equilibrium relative humidity of dried fruit-Sultanas. Journal of Stored Products Research, 8(4): 263-270.
  • Purohit, P., Kumar, A. and Kandpal. T. C. (2006). Solar drying vs. open sun drying: A framework for financial evaluation. Solar Energy, 80(12): 1568–1579.
  • Ramallo, L. A. and Mascheroni, R. H. (2012). Quality evoluation of pineapple fruit during drying process. Food and Bioproducts Processing, 99: 275-283.
  • Rojas, M. L., Augusto, P. E. D. and Carcel, J. A. (2021). Combining ethanol pre-treatment and ultrasound-assisted drying to enhance apple chips by fortification with black carrot anthocyanin. Journal of Food and Agriculture, 101(5): 2078–2089.
  • Sharma, A., Chen, C. R. ve Lan, N. V. (2009). Solar-energy drying systems: A review. Renewable Sustainable Energy Review. 13 (6–7): 1185–1210.
  • Soomro, A. H., Miano, T. F., Marri, A., Kumar, D., Khaskheli, G. S., Arain, U. F. and Baloch, A. B. (2020). Application of pretreatments on banana slices for improving drying characteristics. Food Science and Quality Management, 103: 35-41.
  • Surendhar, A., Sivasubramanian, V., Vidhyeswari, D. and Deepanraj, B. (2019). Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices. Journal of Thermal Analysis and Calorimetry, 136: 185–197.
  • Şahin, F. H., Ülger, P., Aktaş, T. ve Orak, H. H. (2012). Farklı önişlemlerin ve vakum kurutma yönteminin domatesin kuruma karakteristikleri ve kalite kriterleri üzerine etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 9(1): 15-25.
  • Tan, M., Chua, K. J., Mujumdar, A. S. and Chou, S. K. (2001). Effect of osmotic pre-treatment and infrared radiation of drying rate and color changes during drying of potato and pineapple. Drying Technology, 19(9): 2193-2207.
  • Taşkın, O., İzli, G. and İzli, N. (2021). Physicochemical and morphological properties of european cranberrybush powder manufactured by freeze drying. International Journal of Fruit Science, 21(1): 1008-1017.
  • Tinello, F., Mihaylova, D. and Lante, A. (2018). Effect of dipping pre-treatment with unripe grape juice on dried “Golden Delicious” apple slices. Food and Bioprocess Technology, 11: 2275–2285.
  • Wang, C. Y. and Singh, R. P. (1978). A Single Layer Drying Equation for Rough Rice. ASAE Paper No: 78-3001, ASAE, St. Joseph, MI.
  • Winiczenko, R., Kaleta, A. and Gornicki, K. (2021). Application of a MOGA algorithm and ANN in the optimization of apple drying and rehydration processes. Processes, 9(8): 1415.
  • Yan, J. K., Wu, L. X., Qiao, Z. R., Cai, W. D. and Ma, H. L. (2019). Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices. Food Chemical, 271: 588– 596.
There are 40 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Muhammed Taşova 0000-0001-5025-0807

Samet Kaya Dursun 0000-0002-8230-3560

Early Pub Date May 8, 2023
Publication Date May 22, 2023
Submission Date May 17, 2022
Acceptance Date October 6, 2022
Published in Issue Year 2023

Cite

APA Taşova, M., & Dursun, S. K. (2023). Golden delicious L. Çeşidi Elmanın Kuruma Özelliklerine Ön İşlemlerin Etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 20(2), 374-386. https://doi.org/10.33462/jotaf.1117872
AMA Taşova M, Dursun SK. Golden delicious L. Çeşidi Elmanın Kuruma Özelliklerine Ön İşlemlerin Etkisi. JOTAF. May 2023;20(2):374-386. doi:10.33462/jotaf.1117872
Chicago Taşova, Muhammed, and Samet Kaya Dursun. “Golden Delicious L. Çeşidi Elmanın Kuruma Özelliklerine Ön İşlemlerin Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi 20, no. 2 (May 2023): 374-86. https://doi.org/10.33462/jotaf.1117872.
EndNote Taşova M, Dursun SK (May 1, 2023) Golden delicious L. Çeşidi Elmanın Kuruma Özelliklerine Ön İşlemlerin Etkisi. Tekirdağ Ziraat Fakültesi Dergisi 20 2 374–386.
IEEE M. Taşova and S. K. Dursun, “Golden delicious L. Çeşidi Elmanın Kuruma Özelliklerine Ön İşlemlerin Etkisi”, JOTAF, vol. 20, no. 2, pp. 374–386, 2023, doi: 10.33462/jotaf.1117872.
ISNAD Taşova, Muhammed - Dursun, Samet Kaya. “Golden Delicious L. Çeşidi Elmanın Kuruma Özelliklerine Ön İşlemlerin Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi 20/2 (May 2023), 374-386. https://doi.org/10.33462/jotaf.1117872.
JAMA Taşova M, Dursun SK. Golden delicious L. Çeşidi Elmanın Kuruma Özelliklerine Ön İşlemlerin Etkisi. JOTAF. 2023;20:374–386.
MLA Taşova, Muhammed and Samet Kaya Dursun. “Golden Delicious L. Çeşidi Elmanın Kuruma Özelliklerine Ön İşlemlerin Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 20, no. 2, 2023, pp. 374-86, doi:10.33462/jotaf.1117872.
Vancouver Taşova M, Dursun SK. Golden delicious L. Çeşidi Elmanın Kuruma Özelliklerine Ön İşlemlerin Etkisi. JOTAF. 2023;20(2):374-86.