Research Article
BibTex RIS Cite

Biyokömür Uygulamalarının Toprağın Fiziksel ve Kimyasal Özellikleri ile Buğdayın (Triticum aestivum L.) Çimlenme ve Biyomas Üzerine Etkisinin Belirlenmesi

Year 2024, , 297 - 308, 13.03.2024
https://doi.org/10.33462/jotaf.1190812

Abstract

Bu çalışma, biyokömür uygulamalarının Kayra ekmeklik buğday çeşidi yetiştirilen toprakların fiziksel ve kimyasal özellikleri üzerine etkilerini belirlemek amacıyla, saksı denemesi şeklinde tesadüf parselleri deneme desenine göre üç tekerrürlü ve beş farklı dozda 0 (B0), 10 (B1), 20 (B2), 40 (B3) ve 80 (B4) t ha-1biyokömür uygulanmıştır. Biyokömür uygulamalarına göre toprakta en yüksek pH, EC, kireç, organik madde, toplam N, alınabilir P, K, Ca, Mg, Na, Zn, Fe, Mn, Cu ve B değerleri sırasıyla 7.66, 2.26 mS cm-1,% 3.55, %2.81, %0.201, 48.89 mg kg-1, 1172.89 mg kg-1, 2268,88 mg kg-1, 186.92 mg kg-1, (101.43 mg kg-1, 2.34 mg kg-1, 2.40 mg kg-1, 7.33 mg kg-1, 1.79 mg kg-1 ve 1.08 mg kg-1 ile en yüksek değerleri B4 (80 t ha-1) uygulamasında belirlenmiştir. Biyokömür uygulamalarına göre toprakta en düşük değerler pH, EC, kireç, organik madde, toplam N, alınabilir P, K, Ca, Mg, Na, Zn, Fe, Mn, Cu ve B değerleri ise 7.45, 0.87 mS cm-1, % 2.28, % 1.28, % 0.078, 14.92 mg kg-1, 344.84 mg kg-1, 2171,68 mg kg-1, 129.01 mg kg-1, 47.09 mg kg-1, 1.25 mg kg-1, 1.82 mg kg-1, 4.52 mg kg-1, 1.61 mg kg-1 ve 0.71 mg kg-1B0 (kontrol) uygulamasında saptanmıştır. Buğday tohumlarında en yüksek çimlenme oranı %95.41 ile B2 ve en düşük çimlenme oranı ise %90.12 ile B0 uygulamalarında saptanmıştır. Biyokömür uygulamalarının bitkinin yaş ve kuru ağırlığı üzerine etkisi sırasıyla B2 uygulamasında en yüksek (11.42 ve 2.21 gr saksı-1) değerleri ve B0 uygulamasında sırasıyla (10.01 ve 1.93 gr saksı-1) en küçük değerleri aldığı belirlenmiştir.

References

  • Adio, A. A., Saliu, A. O., Akanbi-Gada, M. A. and Najeemdeen, B. A. (2022). Effects of charcoal production on soil physicochemical properties in Moro Local Government Area of Kwara State, Nigeria. Journal of Environmental Protection, 13: 220-232.
  • Akay, A. (2022). Kireçli topraklarda farklı kükürt formları ile biyokömür uygulamalarının turp bitkisinin (Raphanus sativus) gelişimine etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 19(3): 644-655.
  • Akça, M. O. and Namlı, A. (2015). Effects of poultry litter biochar on soil enzyme activities and tomato, pepper, and lettuce plants growth. Eurasian Journal of Soil Science, 4(3): 161-168.
  • Ali, K., Munsif, F., Zubair, M., Hussain, Z., Shahid, M., Din, I. U. and Khan, N. (2011). Management of organic and inorganic nitrogen for different maize varieties. Sarhad Journal of Agriculture, 27(4): 525-529.
  • Amin, A. E. A. Z. (2016). Impact of corn cob biochar on potassium status and wheat growth in a calcareous sandy soil. Communications in Soil Science and Plant Analysis, 47(17): 2026-2033.
  • Amin, A. E. A. Z. and Eissa, M. A. (2017). Biochar effects on nitrogen and phosphorus use effciencies of zucchini plants grown in a calcareous sandy soil. Journal of Soil Science and Plant Nutrition, 17(4): 912-921.
  • Banik, C., Lawrinenko. M., Bakshi. S. and Laird, D. A. (2018). Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars. Journal of Environmental Quality, 47(3):452–461.
  • Bremner, J. M. (1965). Nitrogen Total. In: Sparks, D.L., Ed., Methods of Soil Analysis Part 3: Chemical Methods, SSSA Book Series 5, Soil Science Society of America, Madison, Wisconsin, 1085-1122.
  • Bridgwater, A. V.(2003) Renewable fuels and chemicals by thermal processing of biomass, Chemical Engineering Journal, 91(2): 87-102.
  • Butnan, S., Deenik, J. L., Toomsan, B. and Vityakon, P. (2017). Biochar properties affecting carbon stability in soils contrasting in texture and mineralogy. Agriculture and Natural Resources, 51(6): 492-498.
  • Cantrell, K., Ro, K., Mahajan, D., Anjom, M. and Hunt, P. G. (2007). Role of thermochemical conversion in livestock waste-to-energy treatments: obstacles and opportunities, Industrial & Engineering Chemistry Research, 46(26): 8918-8927.
  • Chan, K. Y., Zwieten, L. V., Meszaros, I., Downie. A. and Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46 (5): 437-444.
  • Doğan, R. ve Çarpıcı, E. B. (2015). Bazı makarnalık buğday (Triticum turgidum L.) genotiplerinin çimlenme döneminde tuz stresine tepkileri. Uludağ Üniversitesi Ziraat Fakültesi, 29(1): 47-55.
  • Domingues, R. R., Trugilho, P. F., Silva, C. A., de Melo, I. C. N. A., Melo, L. C. A., Magriotis, Z. M. and Sanchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. Plos One, 12(5): e0176884.
  • El-Naggar, A., Lee, S. S., Awad, Y. M., Yang, X., Ryu, C., Rizwan, M., Rinklebe, J., Tsang C. W. T. and Ok, Y. S. (2018). Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma, 332: 100-108.
  • Ergün, Y. A. (2017). Biyokömür ve ahır gübresi uygulamalarının topraktaki bazı enzim aktivitelerine, CO2 üretimine, besin elementi içeriğine ve domates bitkisinin gelişimine etkisi. (Yüksek Lisans Tezi), Ordu Üniversitesi Fen Bilimleri Enstitüsü, Ordu.
  • Esposito, N. C. (2013). Soil nutrient availability properties of biochar. (M.Sc. Thesis). The Faculty of Cal Poly State University, San Luis Obispo, USA.
  • Gaskin, J. W., Speir, R. A., Harris, K., Das, K. C., Lee, R. D., Morris, L. A. and Fisher, D. S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2): 623-633.
  • Gezgin, S. (2018). Türkiye Topraklarının Organik Madde Durumu, Organik Madde Kaynaklarımız ve Kullanımı. Organomineral Gübre Çalıştayı, 29 Eylül, p 12-16, İstanbul, Türkiye.
  • Girmay, G., Singh, B. R., Mitiku, H., Borresen, T. and Lal, R. (2008). Carbon stocks in Ethiopian soils in relation to land use and soil management. Land Degradation & Development, 19(4): 351-367.
  • Huang, M., Fan, L., Chen, J., Jiang, L. and Zou, Y. (2018). Continuous applications of biochar to rice: Effects on nitrogen uptake and utilization. Scientific Reports, 8: 11461.
  • Inal, A., Gunes, A., Sahin, O., Taskin, M. B. and Kaya, E. C. (2015). Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use and Management, 31(1): 106-113.
  • Jackson, M. L. (1967). Soil Chemical Analysis. Prentice Hall, of India Private Limited, New Delhi. Jones, D. L. and Healey, J. R. (2010). Organic amendments for remediation: putting waste to good use. Elements, 6(6): 369–374.
  • Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., van Zwieten, L., Kimber, S., Cowie, A., Singh, B. P., Lehmann, J., Foidl, N., Smernik, R. J. and Amonette, J. E. (2010). An investigation into the reactions of biochar in soil. Australian Journal of Soil Research, 48: 501-515.
  • Kalderis, D., Papameletiou, G. and Kayan, B. (2019). Assessment of orange peel hydrochar as a soil amendment: impact on clay soil physical properties and potential phytotoxicity. Waste and Biomass Valorization, 10(11): 3471-3484.
  • Kara, R. S. (2016). Farklı organik materyallerden elde edilen biyokömürün fiziksel ve kimyasal özellikleri ile biyokömür ve biyokömür ile birlikte arıtılmış karasu uygulamasının bitkisel üretimde kullanım olanakları. (Yüksek Lisans Tezi) Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Kayıkcıoğlu, H. H., Tepecik, M. ve Çokan, Ş. E. (2022). Belediye budama atıklarından farklı piroliz sıcaklıklarında elde edilen biyokömürün, mısır verimi ile bazı toprak özellikleri üzerine etkisi. MAS Journal of Applied Sciences, 7(1): 108-127.
  • Khan, S., Ismail, M., Ibrar, M., ul Hag, J., Ali, Z. (2020). The effect of biochar on soil organic matter, total N in soil and plant, nodules, grainyield and biomass of mung bean. Soil and Environment, 39(1): 87-94.
  • Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H. and Soja, G. (2012). Characterization of slow pyrolysis biochars: efects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41(4): 990-1000.
  • Lal, R. (2013). Food security in a changing climate. Ecohydrol Hydrobiol, 13(1): 8–21.
  • Lehmann, J., Gaunt, J. and Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems-a review. Mitigation and Adaptation Strategies for Global Change, 11(2):403-427.
  • Lehmann, J., Silva, J.P., Steiner, C., Nehls, T., Zech, W. and Glaser, B. (2003) Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon basin: fertilizer, manure and charcoal amendments, Plant and Soil, 249: 343–357.
  • Lentz, R. D. and Ippolito, J. A. (2012). Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. Journal of Environmental Quality, 41: 1033-1043.
  • Lindsay, W. L. and Norvell, W. A. (1978). Development of a DTPA Soil Test for Zinc, Iron, Manganese and Copper. Soil Science Society of America Journal, 42(3): 421-428.
  • Majeed, A. J., Dikici, H. and Demir, Ö. F. (2018). Effect of biochar and nitrogen applications on growth of corn (Zea mays L.) plants. Turkish Journal of Agriculture-Food Science and Technology, 6(3): 346-351.
  • Matteson, G. C. and Jenkins, B. M.(2007). Food and processing residues in California: Resource assessment and potential for power generation, Bioresource Technology, 98(16): 3098-3105.
  • Mavi, M. S., Singh, G., Singh, B. P., Sekhon, B. S., Choudhary, O. P., Sagi, S. and Berry, R. (2018). Interactive effects of rice-residue biochar and N-fertilizer on soil functions and crop biomass in contrasting soils. Journal of Soil Science and Plant Nutrition, 18(1): 41-59.
  • Mielki, G. F., Novais, R. F., Ker, C., Vergütz, L. and Castro, G. F. (2016). Iron availability in tropical soils and iron uptake by plants. Revista Brasileira de Ciencia do Solo, 40: 1-14.
  • Mukherjee, A. and Zimmerman, A. R. (2013). Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma, 193: 122-130.
  • Namlı, A., Akça, M. O. ve Akça, H. (2017). Tarımsal atıklardan elde edilen biyokömürün buğday bitkisinin gelişimi ve bazı toprak özellikleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 5(1): 39-47.
  • Oguntunde, P. G., Fosu, M., Ajayi, A. E. and van de Giesen, N. (2004). Effects of charcoal production on maize yield, chemical properties and texture of soil. Biology and Fertility of Soils, 39(4): 295-299.
  • Oh, T. K., Choi, B., Shinogi, Y. and Chikushi, J. (2012). Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water Air and Soil Pollution, 223(7): 3729-3738.
  • Olsen, S. R. and Dean, L. A. (1965). Phoshorus (Ed. C.A. Black) Methods of Soil Analysis. Part. 2. American Society of Agronomy lnc. Publisher Madison Wisconsin USA, No: 9: 920-926.
  • Özyavuz, M. (2017). Biyokömür (biochar) uygulamalarının patlıcan bitkisi ve toprağın kimyasal özellikleri üzerindeki etkisinin belirlenmesi. (Yüksek Lisans Tezi) Harran Üniversitesi, Fen Bilimleri Enstitüsü, Şanlıurfa.
  • Pandit, N. B., Mulder, J., Hale, S. E., Martinsen, V., Schmidt, H. P. and Cornelissen, G. (2018). Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Science of the Total Environment, 625: 1380-1389.
  • Pratt, P. F. and Holowaychuk, N. (1954). A comparison of ammnium acetate, barium acetate, and buffered barium chloride methods of determining cation exchange capacity. Soil Science Society of America Journal, 18: 365-368.
  • Qadeer, S., Batool, A., Rashid, A., Khalid, A., Samad, N. and Ghufra, M. A. (2014). Effectiveness of biochar in soil conditioning under simulated ecological conditions. Soil & Environment, 33: 149-158.
  • Quilty, J. R. and Cattle, S. R. (2011). Use and understanding of organic amendments in Australian agriculture: a review. Soil Research, 49(1):1-26.
  • Sayğan, E. P. (2017). Biyokömürün (biochar) toprak düzenleyicisi olarak kullanım potansiyellerinin belirlenmesi. (Doktora Tezi) Harran Üniversitesi, Fen Bilimleri Enstitüsü, Şanlıurfa.
  • Saygan, E. P. ve Aydemir, S. (2016). Harran ovası kireçli killi toprak özellikleri üzerine antepfıstığı dış kabuğu biyokömür uygulamasının etkisi. Harran Tarım ve Gıda Bilimleri Dergisi, 20(4): 301-312.
  • Schlichting, E. and Blume, E. (1966). Bodenkundliches Praktikum. Paul Parey Verlag, Hamburg, Berlin. Shetty, R. and Prakash, N. B. (2020). Effect of different biochars on acid soil and growth parameters of rice plants under aluminum toxicity. Scientific Reports, 10: 12249.
  • Sial, T. A., Lan, Z., Wang, L., Zhao, Y., Zhang, J., Kumbhar, F., Memon, M., Lashari, M. S. and Shah, A. N. (2019). Effects of different biochars on wheat growth parameters, yield and soil fertility status in a silty clay loam soil. Molecules, 24(9): 1798.
  • Silva, I. C. B., Fernandes, L. A., Colen, F. and Sampaio, R. A. (2017). Growth and production of common bean fertilized with biochar. Ciencia Rural, 47 (11): e20170220.
  • Silva, M. A. G., Roque, S. A. T., Muniz, A. S., Marchetti, M. E., Matta, J. D. V. and Pelisson, N. (2010). Efficiency of organic compost from agri-industrial wastes as fertilizer for corn and wheat. Communications in Soil Science and Plant Analysis, 41(21): 2517-2531.
  • Singh, R., Mavi, M. S. and Choudhary, O. P. (2019). Saline soils can be ameliorated by adding biochar generated from rice-residue waste. Clean Soil Air Water, 47: 1700656.
  • Soil Survey Staff (1951). Soil Survey Manual. U.S. Dep. Agric. Handbk. No. 18. U.S. Government Printing Office. Washington.
  • Soinne, H., Hovi, J., Tammeorg, P. and Turtola, E. (2014). Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma, 219-220: 162-167.
  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hua, X. and Gu, Y. (2015). Application of biochar for the removal of pollutants from aqueous. Chemosphere, 125: 70-85.
  • Tarakçıoğlu, C., Özenç, D. B., Yılmaz, F. I., Kulaç, S. ve Aygün, S. (2019). Fındık kabuğundan üretilen biyokömürün toprağın besin maddesi kapsamı üzerine etkisi. Anadolu Tarım Bilimleri Dergisi, 34: 107-117.
  • Turan, V. (2019). Biyokömür ve kükürt uygulamasının alkali killi-tınlı topraklarda fosfor alınabilirliği ve toprak enzim aktivitesi üzerine etkileri. Türk Tarım ve Doğa Bilimleri Dergisi, 6(3): 527-535.
  • Turhan, A. and Özmen, N. (2021). Effects of chemical and organic fertilizer treatments on yield and quality traits of industrial tomato. Journal of Tekirdağ Agricultural Faculty, 18(2): 213-221.
  • Ülgen, N. ve Yurtsever, N. (1995). Türkiye Gübre ve Gübreleme Rehberi. Toprak ve Gübre Araştırma Enstitüsü Yayınları, Genel Yayın No: 209, Teknik Yayınlar No: T-66 Ankara.
  • Van Zwieten, L., Singh, B. P., Kimber, S. W. L., Murphy, D. V., Macdonald, L. M., Rust, J. and Morris, S. (2014). An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agriculture Ecosystems & Environment, 191: 53-62.
  • Wolf, B. (1971). The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions. Soil Science and Plant Analysis, 2: 363-374.
  • Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. and Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1: 56.
  • Xu, D., Cao, J., Li, Y., Howard. A. and Yu, K. (2019). Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity. Waste Management, 87: 652-660.
  • Zhai, L., Caiji, Z., Liu, J., Wang, H., Ren, T., Gai, X., Xi, B. and Liu, H. (2014). Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biology and Fertility of Soils, 51: 113-122.
  • Zhu, X., Chen, B., Zhu, L. and Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environmental Pollution, 227: 98-115.

Determination of the Effect of Biochar Applications on Soil Physical and Chemical Properties and Wheat (Triticum aestivum L.) Germination and Biomass

Year 2024, , 297 - 308, 13.03.2024
https://doi.org/10.33462/jotaf.1190812

Abstract

In this study, in order to determine the effects of biochar applications on the physical and chemical properties of soils grown in Kayra bread wheat variety, this study was carried out in the form of a pot experiment in a randomized plot design with three replications and at five different doses 0 (B0), 10 (B1), 20 (B2), 40 (B3) and 80 (B4) t ha-1 biochar were applied. According to biochar applications, the highest pH, EC, lime, organic matter, total N, available P, K, Ca, Mg, Na, Zn, Fe, Mn, Cu and B values in the soil are 7.66, 2.26 mS cm-1, 3.55%, 2.81%, 0.201%, 48.89 mg kg-1, 1172.89 mg kg-1, 2268.88 mg kg-1, 186.92 mg kg-1, 101.43 mg kg-1, 2.34 mg kg-1, 2.40 mg kg-1, 7.33 mg kg-1, 1.79 mg kg-1 and 1.08 mg kg-1respectivelythe highest values were determined in B4 (80 t ha-1) application. The lowest values in soil according to biochar applications were pH, EC, lime, organic matter, total N, the available P, K, Ca, Mg, Na, Zn, Fe, Mn, Cu and B values are 7.45, 0.87 mS cm-1, 2.28%, 1.28%, 0.078%, 14.92 mg kg-1, 344.84 mg kg-1 2171.68 mg kg-1, 129.01 mg kg-1, 47.09 mg kg-1, 1.25 mg kg-1, 1.82 mg kg-1, 4.52 mg kg-1, 1.61 mg kg-1 and 0.71 mg kg-1 detected in B0 (control) application. The highest germination rate in wheat seeds was found in B2 with 95.41% and the lowest germination rate was found in B0 applications with 90.12%. It was determined that the effects of biochar applications on the fresh and dry weight of the plant were the highest in B2 application (11.42 and 2.21 gr pot-1) and the lowest values in B0 application (10.01 and 1.93 gr pot-1), respectively. It was detected in 09 mg kg-1, 1.25 mg kg-1, 1.82 mg kg-1, 4.52 mg kg-1, 1.61 mg kg-1 and 0.71 mg kg-1 B0 (control) application. The highest germination rate in wheat seeds was found in B2 with 95.41% and the lowest germination rate was found in B0 applications with 90.12%. It was determined that the effects of biochar applications on the fresh and dry weight of the plant were the highest in B2 application (11.42 and 2.21 gr pot-1) and the lowest values in B0 application (10.01 and 1.93 gr pot-1), respectively. It was detected in 09 mg kg-1, 1.25 mg kg-1, 1.82 mg kg-1, 4.52 mg kg-1, 1.61 mg kg-1 and 0.71 mg kg-1 B0 (control) application. The highest germination rate in wheat seeds was found in B2 with 95.41% and the lowest germination rate was found in B0 applications with 90.12%. It was determined that the effects of biochar applications on the fresh and dry weight of the plant were the highest in B2 application (11.42 and 2.21 gr pot-1) and the lowest values in B0 application (10.01 and 1.93 gr pot-1), respectively.

References

  • Adio, A. A., Saliu, A. O., Akanbi-Gada, M. A. and Najeemdeen, B. A. (2022). Effects of charcoal production on soil physicochemical properties in Moro Local Government Area of Kwara State, Nigeria. Journal of Environmental Protection, 13: 220-232.
  • Akay, A. (2022). Kireçli topraklarda farklı kükürt formları ile biyokömür uygulamalarının turp bitkisinin (Raphanus sativus) gelişimine etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 19(3): 644-655.
  • Akça, M. O. and Namlı, A. (2015). Effects of poultry litter biochar on soil enzyme activities and tomato, pepper, and lettuce plants growth. Eurasian Journal of Soil Science, 4(3): 161-168.
  • Ali, K., Munsif, F., Zubair, M., Hussain, Z., Shahid, M., Din, I. U. and Khan, N. (2011). Management of organic and inorganic nitrogen for different maize varieties. Sarhad Journal of Agriculture, 27(4): 525-529.
  • Amin, A. E. A. Z. (2016). Impact of corn cob biochar on potassium status and wheat growth in a calcareous sandy soil. Communications in Soil Science and Plant Analysis, 47(17): 2026-2033.
  • Amin, A. E. A. Z. and Eissa, M. A. (2017). Biochar effects on nitrogen and phosphorus use effciencies of zucchini plants grown in a calcareous sandy soil. Journal of Soil Science and Plant Nutrition, 17(4): 912-921.
  • Banik, C., Lawrinenko. M., Bakshi. S. and Laird, D. A. (2018). Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars. Journal of Environmental Quality, 47(3):452–461.
  • Bremner, J. M. (1965). Nitrogen Total. In: Sparks, D.L., Ed., Methods of Soil Analysis Part 3: Chemical Methods, SSSA Book Series 5, Soil Science Society of America, Madison, Wisconsin, 1085-1122.
  • Bridgwater, A. V.(2003) Renewable fuels and chemicals by thermal processing of biomass, Chemical Engineering Journal, 91(2): 87-102.
  • Butnan, S., Deenik, J. L., Toomsan, B. and Vityakon, P. (2017). Biochar properties affecting carbon stability in soils contrasting in texture and mineralogy. Agriculture and Natural Resources, 51(6): 492-498.
  • Cantrell, K., Ro, K., Mahajan, D., Anjom, M. and Hunt, P. G. (2007). Role of thermochemical conversion in livestock waste-to-energy treatments: obstacles and opportunities, Industrial & Engineering Chemistry Research, 46(26): 8918-8927.
  • Chan, K. Y., Zwieten, L. V., Meszaros, I., Downie. A. and Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46 (5): 437-444.
  • Doğan, R. ve Çarpıcı, E. B. (2015). Bazı makarnalık buğday (Triticum turgidum L.) genotiplerinin çimlenme döneminde tuz stresine tepkileri. Uludağ Üniversitesi Ziraat Fakültesi, 29(1): 47-55.
  • Domingues, R. R., Trugilho, P. F., Silva, C. A., de Melo, I. C. N. A., Melo, L. C. A., Magriotis, Z. M. and Sanchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. Plos One, 12(5): e0176884.
  • El-Naggar, A., Lee, S. S., Awad, Y. M., Yang, X., Ryu, C., Rizwan, M., Rinklebe, J., Tsang C. W. T. and Ok, Y. S. (2018). Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma, 332: 100-108.
  • Ergün, Y. A. (2017). Biyokömür ve ahır gübresi uygulamalarının topraktaki bazı enzim aktivitelerine, CO2 üretimine, besin elementi içeriğine ve domates bitkisinin gelişimine etkisi. (Yüksek Lisans Tezi), Ordu Üniversitesi Fen Bilimleri Enstitüsü, Ordu.
  • Esposito, N. C. (2013). Soil nutrient availability properties of biochar. (M.Sc. Thesis). The Faculty of Cal Poly State University, San Luis Obispo, USA.
  • Gaskin, J. W., Speir, R. A., Harris, K., Das, K. C., Lee, R. D., Morris, L. A. and Fisher, D. S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2): 623-633.
  • Gezgin, S. (2018). Türkiye Topraklarının Organik Madde Durumu, Organik Madde Kaynaklarımız ve Kullanımı. Organomineral Gübre Çalıştayı, 29 Eylül, p 12-16, İstanbul, Türkiye.
  • Girmay, G., Singh, B. R., Mitiku, H., Borresen, T. and Lal, R. (2008). Carbon stocks in Ethiopian soils in relation to land use and soil management. Land Degradation & Development, 19(4): 351-367.
  • Huang, M., Fan, L., Chen, J., Jiang, L. and Zou, Y. (2018). Continuous applications of biochar to rice: Effects on nitrogen uptake and utilization. Scientific Reports, 8: 11461.
  • Inal, A., Gunes, A., Sahin, O., Taskin, M. B. and Kaya, E. C. (2015). Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use and Management, 31(1): 106-113.
  • Jackson, M. L. (1967). Soil Chemical Analysis. Prentice Hall, of India Private Limited, New Delhi. Jones, D. L. and Healey, J. R. (2010). Organic amendments for remediation: putting waste to good use. Elements, 6(6): 369–374.
  • Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., van Zwieten, L., Kimber, S., Cowie, A., Singh, B. P., Lehmann, J., Foidl, N., Smernik, R. J. and Amonette, J. E. (2010). An investigation into the reactions of biochar in soil. Australian Journal of Soil Research, 48: 501-515.
  • Kalderis, D., Papameletiou, G. and Kayan, B. (2019). Assessment of orange peel hydrochar as a soil amendment: impact on clay soil physical properties and potential phytotoxicity. Waste and Biomass Valorization, 10(11): 3471-3484.
  • Kara, R. S. (2016). Farklı organik materyallerden elde edilen biyokömürün fiziksel ve kimyasal özellikleri ile biyokömür ve biyokömür ile birlikte arıtılmış karasu uygulamasının bitkisel üretimde kullanım olanakları. (Yüksek Lisans Tezi) Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Kayıkcıoğlu, H. H., Tepecik, M. ve Çokan, Ş. E. (2022). Belediye budama atıklarından farklı piroliz sıcaklıklarında elde edilen biyokömürün, mısır verimi ile bazı toprak özellikleri üzerine etkisi. MAS Journal of Applied Sciences, 7(1): 108-127.
  • Khan, S., Ismail, M., Ibrar, M., ul Hag, J., Ali, Z. (2020). The effect of biochar on soil organic matter, total N in soil and plant, nodules, grainyield and biomass of mung bean. Soil and Environment, 39(1): 87-94.
  • Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H. and Soja, G. (2012). Characterization of slow pyrolysis biochars: efects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41(4): 990-1000.
  • Lal, R. (2013). Food security in a changing climate. Ecohydrol Hydrobiol, 13(1): 8–21.
  • Lehmann, J., Gaunt, J. and Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems-a review. Mitigation and Adaptation Strategies for Global Change, 11(2):403-427.
  • Lehmann, J., Silva, J.P., Steiner, C., Nehls, T., Zech, W. and Glaser, B. (2003) Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon basin: fertilizer, manure and charcoal amendments, Plant and Soil, 249: 343–357.
  • Lentz, R. D. and Ippolito, J. A. (2012). Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. Journal of Environmental Quality, 41: 1033-1043.
  • Lindsay, W. L. and Norvell, W. A. (1978). Development of a DTPA Soil Test for Zinc, Iron, Manganese and Copper. Soil Science Society of America Journal, 42(3): 421-428.
  • Majeed, A. J., Dikici, H. and Demir, Ö. F. (2018). Effect of biochar and nitrogen applications on growth of corn (Zea mays L.) plants. Turkish Journal of Agriculture-Food Science and Technology, 6(3): 346-351.
  • Matteson, G. C. and Jenkins, B. M.(2007). Food and processing residues in California: Resource assessment and potential for power generation, Bioresource Technology, 98(16): 3098-3105.
  • Mavi, M. S., Singh, G., Singh, B. P., Sekhon, B. S., Choudhary, O. P., Sagi, S. and Berry, R. (2018). Interactive effects of rice-residue biochar and N-fertilizer on soil functions and crop biomass in contrasting soils. Journal of Soil Science and Plant Nutrition, 18(1): 41-59.
  • Mielki, G. F., Novais, R. F., Ker, C., Vergütz, L. and Castro, G. F. (2016). Iron availability in tropical soils and iron uptake by plants. Revista Brasileira de Ciencia do Solo, 40: 1-14.
  • Mukherjee, A. and Zimmerman, A. R. (2013). Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma, 193: 122-130.
  • Namlı, A., Akça, M. O. ve Akça, H. (2017). Tarımsal atıklardan elde edilen biyokömürün buğday bitkisinin gelişimi ve bazı toprak özellikleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 5(1): 39-47.
  • Oguntunde, P. G., Fosu, M., Ajayi, A. E. and van de Giesen, N. (2004). Effects of charcoal production on maize yield, chemical properties and texture of soil. Biology and Fertility of Soils, 39(4): 295-299.
  • Oh, T. K., Choi, B., Shinogi, Y. and Chikushi, J. (2012). Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water Air and Soil Pollution, 223(7): 3729-3738.
  • Olsen, S. R. and Dean, L. A. (1965). Phoshorus (Ed. C.A. Black) Methods of Soil Analysis. Part. 2. American Society of Agronomy lnc. Publisher Madison Wisconsin USA, No: 9: 920-926.
  • Özyavuz, M. (2017). Biyokömür (biochar) uygulamalarının patlıcan bitkisi ve toprağın kimyasal özellikleri üzerindeki etkisinin belirlenmesi. (Yüksek Lisans Tezi) Harran Üniversitesi, Fen Bilimleri Enstitüsü, Şanlıurfa.
  • Pandit, N. B., Mulder, J., Hale, S. E., Martinsen, V., Schmidt, H. P. and Cornelissen, G. (2018). Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Science of the Total Environment, 625: 1380-1389.
  • Pratt, P. F. and Holowaychuk, N. (1954). A comparison of ammnium acetate, barium acetate, and buffered barium chloride methods of determining cation exchange capacity. Soil Science Society of America Journal, 18: 365-368.
  • Qadeer, S., Batool, A., Rashid, A., Khalid, A., Samad, N. and Ghufra, M. A. (2014). Effectiveness of biochar in soil conditioning under simulated ecological conditions. Soil & Environment, 33: 149-158.
  • Quilty, J. R. and Cattle, S. R. (2011). Use and understanding of organic amendments in Australian agriculture: a review. Soil Research, 49(1):1-26.
  • Sayğan, E. P. (2017). Biyokömürün (biochar) toprak düzenleyicisi olarak kullanım potansiyellerinin belirlenmesi. (Doktora Tezi) Harran Üniversitesi, Fen Bilimleri Enstitüsü, Şanlıurfa.
  • Saygan, E. P. ve Aydemir, S. (2016). Harran ovası kireçli killi toprak özellikleri üzerine antepfıstığı dış kabuğu biyokömür uygulamasının etkisi. Harran Tarım ve Gıda Bilimleri Dergisi, 20(4): 301-312.
  • Schlichting, E. and Blume, E. (1966). Bodenkundliches Praktikum. Paul Parey Verlag, Hamburg, Berlin. Shetty, R. and Prakash, N. B. (2020). Effect of different biochars on acid soil and growth parameters of rice plants under aluminum toxicity. Scientific Reports, 10: 12249.
  • Sial, T. A., Lan, Z., Wang, L., Zhao, Y., Zhang, J., Kumbhar, F., Memon, M., Lashari, M. S. and Shah, A. N. (2019). Effects of different biochars on wheat growth parameters, yield and soil fertility status in a silty clay loam soil. Molecules, 24(9): 1798.
  • Silva, I. C. B., Fernandes, L. A., Colen, F. and Sampaio, R. A. (2017). Growth and production of common bean fertilized with biochar. Ciencia Rural, 47 (11): e20170220.
  • Silva, M. A. G., Roque, S. A. T., Muniz, A. S., Marchetti, M. E., Matta, J. D. V. and Pelisson, N. (2010). Efficiency of organic compost from agri-industrial wastes as fertilizer for corn and wheat. Communications in Soil Science and Plant Analysis, 41(21): 2517-2531.
  • Singh, R., Mavi, M. S. and Choudhary, O. P. (2019). Saline soils can be ameliorated by adding biochar generated from rice-residue waste. Clean Soil Air Water, 47: 1700656.
  • Soil Survey Staff (1951). Soil Survey Manual. U.S. Dep. Agric. Handbk. No. 18. U.S. Government Printing Office. Washington.
  • Soinne, H., Hovi, J., Tammeorg, P. and Turtola, E. (2014). Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma, 219-220: 162-167.
  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hua, X. and Gu, Y. (2015). Application of biochar for the removal of pollutants from aqueous. Chemosphere, 125: 70-85.
  • Tarakçıoğlu, C., Özenç, D. B., Yılmaz, F. I., Kulaç, S. ve Aygün, S. (2019). Fındık kabuğundan üretilen biyokömürün toprağın besin maddesi kapsamı üzerine etkisi. Anadolu Tarım Bilimleri Dergisi, 34: 107-117.
  • Turan, V. (2019). Biyokömür ve kükürt uygulamasının alkali killi-tınlı topraklarda fosfor alınabilirliği ve toprak enzim aktivitesi üzerine etkileri. Türk Tarım ve Doğa Bilimleri Dergisi, 6(3): 527-535.
  • Turhan, A. and Özmen, N. (2021). Effects of chemical and organic fertilizer treatments on yield and quality traits of industrial tomato. Journal of Tekirdağ Agricultural Faculty, 18(2): 213-221.
  • Ülgen, N. ve Yurtsever, N. (1995). Türkiye Gübre ve Gübreleme Rehberi. Toprak ve Gübre Araştırma Enstitüsü Yayınları, Genel Yayın No: 209, Teknik Yayınlar No: T-66 Ankara.
  • Van Zwieten, L., Singh, B. P., Kimber, S. W. L., Murphy, D. V., Macdonald, L. M., Rust, J. and Morris, S. (2014). An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agriculture Ecosystems & Environment, 191: 53-62.
  • Wolf, B. (1971). The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions. Soil Science and Plant Analysis, 2: 363-374.
  • Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. and Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1: 56.
  • Xu, D., Cao, J., Li, Y., Howard. A. and Yu, K. (2019). Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity. Waste Management, 87: 652-660.
  • Zhai, L., Caiji, Z., Liu, J., Wang, H., Ren, T., Gai, X., Xi, B. and Liu, H. (2014). Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biology and Fertility of Soils, 51: 113-122.
  • Zhu, X., Chen, B., Zhu, L. and Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environmental Pollution, 227: 98-115.
There are 68 citations in total.

Details

Primary Language Turkish
Subjects Plant Nutrition and Soil Fertility
Journal Section Articles
Authors

Bilgehan Şenay 0000-0001-7862-257X

Mahmut Tepecik 0000-0001-6609-4538

Early Pub Date March 5, 2024
Publication Date March 13, 2024
Submission Date October 17, 2022
Acceptance Date January 4, 2024
Published in Issue Year 2024

Cite

APA Şenay, B., & Tepecik, M. (2024). Biyokömür Uygulamalarının Toprağın Fiziksel ve Kimyasal Özellikleri ile Buğdayın (Triticum aestivum L.) Çimlenme ve Biyomas Üzerine Etkisinin Belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 21(2), 297-308. https://doi.org/10.33462/jotaf.1190812
AMA Şenay B, Tepecik M. Biyokömür Uygulamalarının Toprağın Fiziksel ve Kimyasal Özellikleri ile Buğdayın (Triticum aestivum L.) Çimlenme ve Biyomas Üzerine Etkisinin Belirlenmesi. JOTAF. March 2024;21(2):297-308. doi:10.33462/jotaf.1190812
Chicago Şenay, Bilgehan, and Mahmut Tepecik. “Biyokömür Uygulamalarının Toprağın Fiziksel Ve Kimyasal Özellikleri Ile Buğdayın (Triticum Aestivum L.) Çimlenme Ve Biyomas Üzerine Etkisinin Belirlenmesi”. Tekirdağ Ziraat Fakültesi Dergisi 21, no. 2 (March 2024): 297-308. https://doi.org/10.33462/jotaf.1190812.
EndNote Şenay B, Tepecik M (March 1, 2024) Biyokömür Uygulamalarının Toprağın Fiziksel ve Kimyasal Özellikleri ile Buğdayın (Triticum aestivum L.) Çimlenme ve Biyomas Üzerine Etkisinin Belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi 21 2 297–308.
IEEE B. Şenay and M. Tepecik, “Biyokömür Uygulamalarının Toprağın Fiziksel ve Kimyasal Özellikleri ile Buğdayın (Triticum aestivum L.) Çimlenme ve Biyomas Üzerine Etkisinin Belirlenmesi”, JOTAF, vol. 21, no. 2, pp. 297–308, 2024, doi: 10.33462/jotaf.1190812.
ISNAD Şenay, Bilgehan - Tepecik, Mahmut. “Biyokömür Uygulamalarının Toprağın Fiziksel Ve Kimyasal Özellikleri Ile Buğdayın (Triticum Aestivum L.) Çimlenme Ve Biyomas Üzerine Etkisinin Belirlenmesi”. Tekirdağ Ziraat Fakültesi Dergisi 21/2 (March 2024), 297-308. https://doi.org/10.33462/jotaf.1190812.
JAMA Şenay B, Tepecik M. Biyokömür Uygulamalarının Toprağın Fiziksel ve Kimyasal Özellikleri ile Buğdayın (Triticum aestivum L.) Çimlenme ve Biyomas Üzerine Etkisinin Belirlenmesi. JOTAF. 2024;21:297–308.
MLA Şenay, Bilgehan and Mahmut Tepecik. “Biyokömür Uygulamalarının Toprağın Fiziksel Ve Kimyasal Özellikleri Ile Buğdayın (Triticum Aestivum L.) Çimlenme Ve Biyomas Üzerine Etkisinin Belirlenmesi”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 21, no. 2, 2024, pp. 297-08, doi:10.33462/jotaf.1190812.
Vancouver Şenay B, Tepecik M. Biyokömür Uygulamalarının Toprağın Fiziksel ve Kimyasal Özellikleri ile Buğdayın (Triticum aestivum L.) Çimlenme ve Biyomas Üzerine Etkisinin Belirlenmesi. JOTAF. 2024;21(2):297-308.