Research Article
BibTex RIS Cite

İzmir Yöresi Zeytin Bahçe Topraklarının Karbon ve Azot Stokları

Year 2024, , 111 - 124, 30.01.2024
https://doi.org/10.33462/jotaf.1239715

Abstract

Toprak organik karbonu (SOC) ve toplam azotu (TN) sürdürülebilir toprak kalitesi, bitkisel üretim ve çevresel etkilerde çok önemli bir role sahiptir, Karbon: Azot (C: N) oranının belirlenmesi ise ekosistem fonksiyonları açısından veri bankalarının oluşturulması için oldukça önemlidir. Bitkiler, ekosistem verimi ve kıtasal karbon döngüsünün yanı sıra SOC ve TN etkileşimini de etkiler. İklim, atmosfer ve arazi kullanımındaki değişikliklerin tümü, karbon (C) ve nitrojen (N) döngülerinin sayısal modellerine dahil edilir. Bu çalışma, Türkiye de İzmir ili Aliağa, Bayındır, Bergama, Dikili, Foça, Karaburun, Kemalpaşa, Menderes, Menemen, Ödemiş, Seferihisar, Selçuk, Tire ve Torbalı ilçelerindeki zeytin bahçelerinin SOC ve TN stokları, C: N oranı ve bunların toprak özellikleri ile ilişkilerini belirlemek amacıyla yürütülmüştür. Bu amaçla 0-30 cm derinlikten 129 adet toprak örneği alınmıştır. Toprak tekstürü, toprak reaksiyonu (pH), elektriksel iletkenlik (EC), kireç, organik madde (OM), SOC ve TN içeriği ve stoklar, hacim ağırlığı (Db) değerleri belirlenmiştir. Sırasıyla, Db ve C: N oranı 0.84-1.31 g cm-3 ve 5.17-80.50 arasında, SOC yoğunluğu ve stokları 4.00-53.00 mg cm-3, 1.25-1.59 kg m-2 arasında, N yoğunluğu ve stokları ise 0,09-2,66 mg cm-3 ve 0.03-0.80 kg m-2 arasında değişmiştir. En yüksek Db Tire'den, en yüksek SOC stokları Karaburun'dan, en yüksek TN ise Seferihisar ve Karaburun'dan elde edilmiştir. OM ve kil ile negatif ilişkili olan çok küçük kütle yoğunluğu önemli bir özelliktir. SOC içerikleri, nispeten yoğun yağış alan bölgelerde daha yüksekti. SOC ve toprak dokusu arasında güçlü bir ilişki vardır. Sonuç olarak, toprak tekstürü, yağış, sıcaklık, toprak derinlikleri ve toprağın yenilenmesi SOC ve TN stoklarını etkiler. Sonuçlar, zeytin yetiştiriciliği için sürdürülebilir toprak kalitesi ve ekosistem fonksiyonları açısından etkili olabilir.

Supporting Institution

Ulusal Bor Araştırma Enstitüsü (BOREN)

Project Number

2015-30-06-20-003

Thanks

Projeye desteklerinden dolayı BOREN'e sonsuz teşekkürlerimi borç bilirim.

References

  • Adeyemo, A. J., Akingbola, O. O. and Ojeniyi, S. O. (2019). Effects of poultry manure on soil infiltration, organic matter contents and maize performance on two contrasting degraded alfisols in southwestern Nigeria. International Journal of Recycling of Organic Waste in Agriculture, 8: 73-80. https://doi.org/10.1007/s40093-019-0273-7
  • Albrecht, A. and Kandji, S. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture Ecosystems Environment, 99: 15-27. https://doi.org/10.1016/S0167-8809(03)00138-5
  • Alistair Pitty, F. (1979). Geography and Soil Properties. ISBN 13: 9780416753806, Routledge Publishing: California, Simi Valley, CA, USA, P. 302.
  • Anonymous Soil Survey Staff (1951) Soil Survey Manuel. Agricultural Research Administration, Department of Agriculture Handbook, No:18, Gount Point Office Publishing: Washington, USA, P. 340-377.
  • Arbeitsgruppe, B. (2005) Bodenkundliche Kartieranleitung (KA5) (Soil survey instruction). (Ed E Hannover) Schweizerbart’sche Verlagsbuchhandlung Publishing: Stuttgart, P. 438.
  • Aktas, T. and Yuksel, O. (2020). Effects of vermicompost on aggregate stability, bulk density, and some chemical characteristics of soils with different textures. Journal of Tekirdag Agricultural Faculty, 17(1): 1-11.
  • Aydogdu, E. (2011). Investigation of nutritional elements of leaves in tomato and well-used olives and their seasonal changes. (MSc. Thesis) Cukurova University, Institute of Science, Department of Soil Science and Plant Nutrition, Adana, Türkiye.
  • Bauer, A. and Black, A. L. (1994). Quantification of the effect of soil organic matter content on soil productivity. Soil Science Society of America Journal, 58: 185-193. https://doi.org/10.2136/sssaj1994.03615995005800010027x
  • Berg, B. and McClaugherty, C. (2003). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer Verlag Publishing: Berlin-Heidelberg, Germany, P. 286.
  • Black, C. A. (1965). Methods of Analysis Agreon. American Society of Agronomy No: 9. Madison Publishing: Wisconsin, USA.
  • Brady, C. and Weil, R. R. (2008). The Nature and Properties of Soils. 14 Edn., Pearson Prentice Hall Publishing: Upper Saddle River, New Jersey Columbus, Ohia, USA.
  • Brye, K. R., Slaton, N. A., Norman, R. J. and Savin, M. C. (2005). Short-term effects of poultry litter form and rate on soil bulk density and water content. Communications in Soil Science and Plant Analysis, 35 (15-16): 311-2325.
  • Burghardt, W. and Schneider, T. (2018). Bulk density and content, density and stock of carbon, nitrogen, and heavy metals in vegetable patches and lawns of allotments gardens in the northwestern Ruhr area, Germany. Journal of Soils Sediments, 18: 407-417. https://doi.org/10.1007/s11368-016-1553-8
  • Burke, I. C., Yonker, C. M., Parton, W. J., Cole, C. V., Flach, K. and Schimel, D. S. (1989). Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Science Society of America Journal, 53: 800-805. https://doi.org/10.2136/sssaj1989.03615995005300030029x
  • Callesen, I., Rasmussen, K. R., Westman, C. J. and TauStrand, L. (2007). Nitrogen pools and C: N ratios in well-drained Nordic forest soils related to climate and soil texture. Boreal Environment Research, 12: 681-692.
  • Conant, R. T., Klopatek, J. M., Malin, R. C. and Klopatek, C. C. (1998). Carbon pools and fluxes along an environmental gradient in northern Arizona. Biogeochemistry, 43: 43-61.
  • Condron, L. M., Black, A. and Wakelin, S. A. (2012). Effects of long-term fertilizer inputs on the quantities of organic carbon in a soil profile under irrigated grazed pasture. New Zealand Journal of Agricultural Research, 55(2): 161-164.
  • Cote L., Brown, S., Pare, D., Fyles, J. and Bauhus, J. (2000). Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age, and soil texture in the boreal mixed wood. Soil Biology and Biochemistry, 32: 1079-1090. https://doi.org/10.1016/S0038-0717(00)00017-1
  • Diekow, J., Mielniczuk, J., Knicker, H., Bayer, C., Dick, D. P. and Kogel-Knabner, I. (2005). Soil C and N stocks as affected by cropping systems and nitrogen fertilization in a southern Brazil Acrisol managed under no-tillage for 17 years. Soil and Tillage Research, 81: 87-95. https://doi.org/10.1016/j.still.2004.05.003
  • Deliboran, A., Savran, K., Dursun, O., Eralp, O., Pekcan, T., Turan, H. S., Aydogdu, E., Cilgin, I., Ata Olmez, H., Savran, S. and Nacar, A. S. (2020). Determination of nutritional status of olive (Olea europaea L.) trees grown in Izmir and Mugla province in terms of boron and the other microelements with soil and leaf analyzes. Journal of Tekirdag Agricultural Faculty, 17(3): 392-405. https://doi.org/10.33462/jotaf.701037
  • Doran J.W. and Parkin, T. B. (1994). Defining and Assessing Soil Quality. In: Doran, J. W., Coleman, D. C., Bezdicek, D. F., Stewart, B. A. Eds., Defining Soil Quality for a Sustainable Environment. Soil Science Society of America Journal, P. 3-21. doi:10.2136/sssaspecpub35.c1.
  • Duxbury, J. M. (1994). The significance of agricultural sources of greenhouse gases. Fertilizer Research, 38: 151-163. https://doi.org/10.1007/BF00748775
  • Erhart, E. and Hartl, W. (2010). Compost Use In Organic Farming. In Genetic Engineering, Biofertilization, Soil Quality and Organic Farming. Springer Neth. P. 311-345.
  • Fu, X., Shao, M., Wei, X. and Horton, R. (2010). Soil organic carbon and total nitrogen as affected by vegetation types in the Northern Loess Plateau of China. Geoderma, 155: 31-35. https://doi.org/10.1016/j.geoderma.2009.11.020
  • Franzmeier, D. P., Lemme, G. D. and Miles, R. J. (1985). Organic carbon in soils of North-central United States. Soil Science Society of America Journal, 49: 702-708. https://doi.org/10.2136/sssaj1985.03615995004900030035x
  • Gallardo, A., Rodriguez-Saucedo, J., Covelo, F. and Fernandez-Ales, R. (2000). Soil nitrogen heterogeneity in Dehesa ecosystem. Plant Soil, 222: 71-82. https://doi.org/10.1023/A:1004725927358
  • Ganuza, A., Almendros, G. (2003). Organic carbon storage in soils of the Basque Country (Spain): the effect of climate, vegetation type, and edaphic variables. Biology and Fertility of Soils, 37: 154-162.
  • Grigal, D. F. and Ohmann, L. F. (1992). Carbon storage in upland forests of the Lake States. Soil Science Society of America Journal, 56: 935-943. https://doi.org/10.2136/sssaj1992.03615995005600030042x
  • Gonzalez Parra, J. and Candas, M. (2004). Organic matter in soils under evergreen oaks Carbon and nitrogen mineralization. Forest Systems, 13: 75-83. https://doi.org/10.5424/srf/200413S1-00856
  • Hernanz, J. L., Sanchez-Giron, V. and Navarrete, L. (2009). Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agriculture Ecosystems Environment, 133: 114-122. https://doi.org/10.1016/j.agee.2009.05.009
  • Homann, P. S., Sollins, P., Chappell, H. N. and Stangenberger, A. G. (1995). Soil organic carbon in a mountainous, forested region: relation to site characteristics. Soil Science Society of America Journal, 59: 468-1475. https://doi.org/10.2136/sssaj1995.03615995005900050037x
  • Homann, P. S., Remillard, S. M., Harmon, M. E. and Bormann, B. (2004). Carbon storage in coarse and fine fractions of Pacific Northwest old-growth forest soils. Soil Science Society of America Journal, 68: 2023-2030. https://doi.org/10.2136/sssaj2004.2023
  • Homann, P. S., Kapchinske, J. S. and Boyce, A. (2007). Relations of mineral-soil C and N to climate and texture: regional differences within the conterminous USA. Biogeochemistry, 85: 303-316.
  • Hontoria, C., Rodriguez-Murillo, J. C. and Saa, A. (1999). Relationships between soil organic carbon and site characteristics in peninsular Spain. Soil Science Society of America Journal, 63: 614-621.
  • Jenkinson, D. S. (1990). The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society of London B, 329: 361-368.
  • Jiao, Y., Zhu, X. U., Jiaohong, Z. and Wenzhu, Y. (2012). Changes in soil carbon stocks and related soil properties along a 50 year grassland to cropland conversion chronosequence in an agropastoral ecotone of Inner Mongolia, China. Journal of Arid Land, 4: 420-430.
  • John, B., Yamashita, T., Ludwig, B. and Flessa, H. (2005). Storage of organic carbon in aggregate and density fractions of soils under different types of land use. Geoderma, 128: 63-79.
  • Kashi, H., Abdipoor, M. and Arastoo, B. (2016). Impacts of land use changes on soil carbon and nitrogen stocks case study: Shahmirzad lands, semnan province, Iran. Journal of Rangeland Science, 6 (2): 156-166.
  • Kelliher, F. M., Condron, L. M., Cook, F. J. and Black, A. (2012). Sixty years of seasonal irrigation affects carbon storage in soils beneath pasture grazed by sheep. Agriculture Ecosystems and Environment, 148: 29-36.
  • Krull, E. S., Baldock, J. A. and Skjemstad, J. O. (2003). Importance of mechanisms and processes of the stabilization of soil organic matter for modeling carbon turnover. Functional Plant Biology, 30(2): 207-222.
  • Lal, R. and Follett, R. F. (2009). Soil Carbon Sequestration and the Greenhouse Effect, 2nd edition. Soils and climate change. Soil Science Society of America Publishing: Madison WI, P: 410.
  • Leifeld, J., Bassin, S. and Fuhrer, J. (2005). Carbon Stocks in Swiss agricultural soils predicted by land–use soil characteristics and altitude. Agriculture Ecosystems and Environment, 105: 255-266.
  • Lemenih M. and Itanna, F. (2004). Soil carbon stock and turnovers in various vegetation types and arable lands along an elevation gradient in southern Ethiopia. Geoderma, 123: 177-188.
  • Liski J. and Westman, C. J. (1997). Carbon storage in forest soil of Finland 1. Effect of thermoclimate. Biogeochemistry, 36: 239-260.
  • Maynard, A. A. (2000). Compost: the process and research The Connecticut Agricultural Experimental Research Station. New Haven Bulletin, 966: 1-14.
  • McGeehan, S. L. and Naylor, D. V. (1988). Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Communications in Soil Science and Plant Analysis, 19(4): 493-505.
  • McLauchlan, K. K. (2006). Effect of soil texture on soil carbon and nitrogen dynamic after cessation of agriculture. Geoderma, 136: 289-299.
  • MGM (2022). General Directorate of Meteorology. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=IZMIR. (Accessed Date: 22.04.2022).
  • Miller, A. J., Amundson, R., Burke, I. C. and, Yonker, C. (2004). The effect of climate and cultivation on soil organic C and N. Biogeochemistry, 67: 57-72.
  • Nichols, J. D. (1984). Relation of organic carbon to soil properties and climate in the Southern Great Plains. Soil Science Society of America Journal, 48: 1382-1384.
  • Ouedraogo, E., Mando, A. and Stroosnijder, L. (2006). Effects of tillage, organic resources, and nitrogen fertilizer on soil carbon dynamics and crop nitrogen uptake in semi-arid West Africa. Soil Tillage Research, 91: 57-67.
  • Parras-Alcantara, L., Martin-Carrillo, M. and Lozano-Garcia, B. (2013). Impacts of land-use change in soil carbon and nitrogen in a Mediterranean agricultural area (Southern Spain). Solid Earth, 4: 167-177.
  • Paruelo, J. M., Jobbagy, E. G., Salao, O. E., Lauenroth, W. K. and Burke, I. C. (1998). Functional and structural convergence of temperate grassland and shrubland ecosystems. Ecological Applications, 8: 194-206.
  • Parton, W. J., Schimel, D. S., Cole, C. V. and Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels on Great Plains grasslands. Soil Science Society of America Journal, 51: 1173-1179.
  • Percival, H. J., Parfitt, R. L. and Scott, N. A. (2000). Factors controlling soil carbon levels in New Zealand grasslands: is clay content important?. Soil Science Society of America Journal, 64(50): 1623-1630.
  • Pepper, D. A., Del Grosso, S. J., McMurtrie, R. E. and Parton, W. J. (2005). Simulated carbon sink response of shortgrass steppe, tallgrass prairie, and forest ecosystems to rising [CO2], temperature, and nitrogen input. Global Biogeochem Cycles, 19(1): GB1004.
  • Puget, P. and Lal, R. (2005). Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Tillage Research, 80: 201-213.
  • Plante, A., Conant, R. T., Stewart, C. E., Paustian, K. and Six, J. (2006). Impact of Soil Texture on the Distribution of Soil Organic Matter in Physical and Chemical Fractions. Soil Science Society of America Journal, 70: 287-296.
  • Post, W. M., Emmanuel, W. R., Zinke, P. J. and Stangenberger, A. G. (1982). Soil carbon pools and World life zones. Nature, 298: 156-159.
  • Post, W. M. and Kwon, K. C. (2000). Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 6: 317-327.
  • Prather, M., Derwent, R. and Ehhait, D. (1995). Other Trace Gases And Atmospheric Chemistry. In: Climate change 1994: radioactive forcing of climate change and the IPCC IS92 emission scenarios. (Eds JT Houghton et al.) Cambridge University Publishing: England, p. 73-126.
  • Ozturkmen, A. R., Ramazanoglu, E., Almaca, A. and Cakmali, M. (2020). Effect of intercropping on soil physical and chemical properties in an olive orchard. Applied Ecology and Environmental Research, 18(6): 7783-7793.
  • Ozturkmen, A. R. and Ramazanoglu, E. (2020). Effects of different land uses on some physical and chemical properties of soils originated from the volcanic parent materials. Fresenius Environmental Bulletin, 2(12A): 11450-11460.
  • Ozturkmen, A. R., Ramazanoglu, E., Celik, A. and Arslan, M. (2021). Effects of different land use on some soil properties in adıyaman province. European Journal of Science and Technology, 25: 594-600.
  • Sainju, U. M., Senwo, Z. N., Nyakatawa, E. Z., Tazisong, I. A. and Reddy, K. C. (2008). Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping systems, and nitrogen fertilizer sources. Agriculture Ecosystems and Environment, 127: 234-240.
  • Sakin, E., Deliboran, A., Sakin, E. D. and Tutar, E. (2010). Carbon Stocks in Harran Plain Soils, Sanliurfa, Turkey. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3): 151-156.
  • Sakin, E., Deliboran, A. and Tutar, E. (2011a). Bulk density of Harran plain soils in relation to other soil properties. African Journal of Agricultural Research, 6(7): 1750-1757.
  • Sakin, E., Deliboran, A., Sakin, E. D. and Aslan, H. (2011b). Carbon and nitrogen stocks and C: N ratios of Harran Plain soils. Romanian Agricultural Research, 28: 171-180.
  • Sakin, E. (2012). Relationships between carbon, nitrogen stocks, and texture of the Harran Plain soils in southeastern Turkey. Bulgarian Journal of Agricultural Sciences, 18(4): 626-634.
  • Sakin, E., Sakin, E. D. (2014). Important of Ratio C: N With Carbon and Nitrogen Amounts at Soils. International Mesopotamia Agriculture Congress, 22-25 September, P. 273-275, Diyarbakir, Türkiye.
  • Schipper, L. A., Dodd, M. B., Pronger, J., Mudge, P. L., Upsell, M., Moss, R. A. (2012). Decadal changes in soil carbon and nitrogen under a range of irrigation and phosphorus fertilizer treatments. Soil Science Society of America Journal, 77: 246-256.
  • Schlesinger, W. H. (1997). Biogeochemistry, An Analysis of Global Change, 2nd ed., P. 588, Cambridge University Publisng, New York.
  • Sims, Z. R., Nielsen, G. A. (1986). Organic carbon in Montana soils is related to clay content and climate. Soil Science Society of America Journal, 50: 1269-1271.
  • Seeber, J. and Seeber. G. U. H. (2005). Effects of landuse changes on humus forms on alpine pastureland (Central Alps, Tyrol). Geoderma, 124: 15-222.
  • Smith, P. (2008). Land-use change and soil organic carbon Dynamics. Nutrient Cycling Agroecosystems, 81: 169-178.
  • Turan, H. S., Aydogdu, E., Pekcan T. and Colakoglu, H. (2013). Relationships of olive groves in the West Anatolia region of Turkey’, Communications in Soil Science and Plant Analysis, 44: 80-88.
  • Tremblay, S., Ouimet, R. and Houle, D. (2002). Prediction of organic carbon content in upland forest soils of Quebec, Canada. Canadian Journal of Forest Research, 32: 903-914.
  • Tuzuner, A. (1990). Soil and Water Analysis Handbook. Ministry of Agriculture, Forestry and Rural Affairs General Directorate of Rural Services Publishing, P.16, Ankara.
  • Tisdale, S. L., Nelson, W. L. and Beaton, J. D. (1985). Soil Fertility and Fertilizers. 4th Edition, P.188-239, Macmillan Publishing, New York.
  • Yano, Y., Mcdowel, W. H. and Aber, J. D. (2000). Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition. Soil Biology and Biochemistry, 32: 1743-1751.
  • Yamashita, T., Feiner, H., Bettina, J., Helfrich, M. and Ludwig, B. (2006). Organic matter in density fractions of water-stable aggregates in silty soils: effect of land use. Soil Biology and Biochemistry, 38: 3222-3234.
  • Yimer, F., Ledin, S. and Abdelkadir, A. (2007). Changes in soil organic carbon and total nitrogen contents in three adjacent land use types in the Bale Mountains, southeastern highlands of Ethiopia. Forest Ecology Management, 242: 337-342.
  • Wang, S., Huang, M., Shao, X. and Mickler, R.A. (2004). Vertical distribition of soil organic carbon in China. Environmental Management, 33: 200-209.
  • Zhang, T., Wang, Y., Wang, X., Wang, Q. and Han, J. (2009). Organic carbon and nitrogen stocks in reed meadow soils converted to alfalfa fields. Soil Tillage Research, 105: 143-148.
  • Zhang, C. H., Wang, Z. M., Ju, W. M. and Ren, C. Y. (2011). Spatial and temporal variability of soil C/N ratio in Songnen Plain maize belt. Environmental Science, 32(5): 1407-1414.

Carbon and Nitrogen Stocks of Olive Orchard Soils in Izmir Province

Year 2024, , 111 - 124, 30.01.2024
https://doi.org/10.33462/jotaf.1239715

Abstract

Soil organic carbon (SOC) and total nitrogen (TN) have a very important role in sustainable soil quality, crop production, and environmental impacts, and determining of carbon nitrogen ratio (C: N ratio) is very important for creating data banks in terms of ecosystem functions. Plants influence the interaction of SOC and TN, as well as ecosystem yield and the continental carbon cycle. Climate, atmosphere, and land-use change are all included in numerical models of the carbon (C) and nitrogen (N) cycles. This study was conducted to determine the SOC and TN stocks, the C: N ratio and their relationships with the soil properties of olive orchards in Aliaga, Bayindir, Bergama, Dikili, Foca, Karaburun, Kemalpasa, Menderes, Menemen, Odemis, Seferihisar, Selcuk, Tire, Torbali and Urla provinces of Izmir in Turkey. For this purpose, 129 soil samples were taken from 0-30 cm depth. The texture, pH, EC, lime, OM, SOC and TN content and stocks, Bulk density (Db) was determined. Db and C: N ratio varied between 0.84-1.31 g cm-3, 5.17-80.50, and SOC density and stocks changed between 4.00-53.00 mg cm-3, 1.25-1.59 kg m-2, N density and stocks between 0.09-2.66 mg cm-3, 0.03-0.80 kg m-2, respectively. The highest BD was obtained from Tire, the highest SOC stocks from Karaburun, the highest TN from Seferihisar and Karaburun. The very small bulk density which is negatively associated with OM and clay is an important feature. The SOC contents were higher in relatively heavy rainfall regions. SOC and soil texture have a strong relationship. As a result, texture, precipitation, temperature, soil depths, and regeneration of soil affect the SOC and TN stocks. The results may be effective in terms of sustainable soil quality and ecosystem functions for olive cultivation.

Project Number

2015-30-06-20-003

References

  • Adeyemo, A. J., Akingbola, O. O. and Ojeniyi, S. O. (2019). Effects of poultry manure on soil infiltration, organic matter contents and maize performance on two contrasting degraded alfisols in southwestern Nigeria. International Journal of Recycling of Organic Waste in Agriculture, 8: 73-80. https://doi.org/10.1007/s40093-019-0273-7
  • Albrecht, A. and Kandji, S. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture Ecosystems Environment, 99: 15-27. https://doi.org/10.1016/S0167-8809(03)00138-5
  • Alistair Pitty, F. (1979). Geography and Soil Properties. ISBN 13: 9780416753806, Routledge Publishing: California, Simi Valley, CA, USA, P. 302.
  • Anonymous Soil Survey Staff (1951) Soil Survey Manuel. Agricultural Research Administration, Department of Agriculture Handbook, No:18, Gount Point Office Publishing: Washington, USA, P. 340-377.
  • Arbeitsgruppe, B. (2005) Bodenkundliche Kartieranleitung (KA5) (Soil survey instruction). (Ed E Hannover) Schweizerbart’sche Verlagsbuchhandlung Publishing: Stuttgart, P. 438.
  • Aktas, T. and Yuksel, O. (2020). Effects of vermicompost on aggregate stability, bulk density, and some chemical characteristics of soils with different textures. Journal of Tekirdag Agricultural Faculty, 17(1): 1-11.
  • Aydogdu, E. (2011). Investigation of nutritional elements of leaves in tomato and well-used olives and their seasonal changes. (MSc. Thesis) Cukurova University, Institute of Science, Department of Soil Science and Plant Nutrition, Adana, Türkiye.
  • Bauer, A. and Black, A. L. (1994). Quantification of the effect of soil organic matter content on soil productivity. Soil Science Society of America Journal, 58: 185-193. https://doi.org/10.2136/sssaj1994.03615995005800010027x
  • Berg, B. and McClaugherty, C. (2003). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer Verlag Publishing: Berlin-Heidelberg, Germany, P. 286.
  • Black, C. A. (1965). Methods of Analysis Agreon. American Society of Agronomy No: 9. Madison Publishing: Wisconsin, USA.
  • Brady, C. and Weil, R. R. (2008). The Nature and Properties of Soils. 14 Edn., Pearson Prentice Hall Publishing: Upper Saddle River, New Jersey Columbus, Ohia, USA.
  • Brye, K. R., Slaton, N. A., Norman, R. J. and Savin, M. C. (2005). Short-term effects of poultry litter form and rate on soil bulk density and water content. Communications in Soil Science and Plant Analysis, 35 (15-16): 311-2325.
  • Burghardt, W. and Schneider, T. (2018). Bulk density and content, density and stock of carbon, nitrogen, and heavy metals in vegetable patches and lawns of allotments gardens in the northwestern Ruhr area, Germany. Journal of Soils Sediments, 18: 407-417. https://doi.org/10.1007/s11368-016-1553-8
  • Burke, I. C., Yonker, C. M., Parton, W. J., Cole, C. V., Flach, K. and Schimel, D. S. (1989). Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Science Society of America Journal, 53: 800-805. https://doi.org/10.2136/sssaj1989.03615995005300030029x
  • Callesen, I., Rasmussen, K. R., Westman, C. J. and TauStrand, L. (2007). Nitrogen pools and C: N ratios in well-drained Nordic forest soils related to climate and soil texture. Boreal Environment Research, 12: 681-692.
  • Conant, R. T., Klopatek, J. M., Malin, R. C. and Klopatek, C. C. (1998). Carbon pools and fluxes along an environmental gradient in northern Arizona. Biogeochemistry, 43: 43-61.
  • Condron, L. M., Black, A. and Wakelin, S. A. (2012). Effects of long-term fertilizer inputs on the quantities of organic carbon in a soil profile under irrigated grazed pasture. New Zealand Journal of Agricultural Research, 55(2): 161-164.
  • Cote L., Brown, S., Pare, D., Fyles, J. and Bauhus, J. (2000). Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age, and soil texture in the boreal mixed wood. Soil Biology and Biochemistry, 32: 1079-1090. https://doi.org/10.1016/S0038-0717(00)00017-1
  • Diekow, J., Mielniczuk, J., Knicker, H., Bayer, C., Dick, D. P. and Kogel-Knabner, I. (2005). Soil C and N stocks as affected by cropping systems and nitrogen fertilization in a southern Brazil Acrisol managed under no-tillage for 17 years. Soil and Tillage Research, 81: 87-95. https://doi.org/10.1016/j.still.2004.05.003
  • Deliboran, A., Savran, K., Dursun, O., Eralp, O., Pekcan, T., Turan, H. S., Aydogdu, E., Cilgin, I., Ata Olmez, H., Savran, S. and Nacar, A. S. (2020). Determination of nutritional status of olive (Olea europaea L.) trees grown in Izmir and Mugla province in terms of boron and the other microelements with soil and leaf analyzes. Journal of Tekirdag Agricultural Faculty, 17(3): 392-405. https://doi.org/10.33462/jotaf.701037
  • Doran J.W. and Parkin, T. B. (1994). Defining and Assessing Soil Quality. In: Doran, J. W., Coleman, D. C., Bezdicek, D. F., Stewart, B. A. Eds., Defining Soil Quality for a Sustainable Environment. Soil Science Society of America Journal, P. 3-21. doi:10.2136/sssaspecpub35.c1.
  • Duxbury, J. M. (1994). The significance of agricultural sources of greenhouse gases. Fertilizer Research, 38: 151-163. https://doi.org/10.1007/BF00748775
  • Erhart, E. and Hartl, W. (2010). Compost Use In Organic Farming. In Genetic Engineering, Biofertilization, Soil Quality and Organic Farming. Springer Neth. P. 311-345.
  • Fu, X., Shao, M., Wei, X. and Horton, R. (2010). Soil organic carbon and total nitrogen as affected by vegetation types in the Northern Loess Plateau of China. Geoderma, 155: 31-35. https://doi.org/10.1016/j.geoderma.2009.11.020
  • Franzmeier, D. P., Lemme, G. D. and Miles, R. J. (1985). Organic carbon in soils of North-central United States. Soil Science Society of America Journal, 49: 702-708. https://doi.org/10.2136/sssaj1985.03615995004900030035x
  • Gallardo, A., Rodriguez-Saucedo, J., Covelo, F. and Fernandez-Ales, R. (2000). Soil nitrogen heterogeneity in Dehesa ecosystem. Plant Soil, 222: 71-82. https://doi.org/10.1023/A:1004725927358
  • Ganuza, A., Almendros, G. (2003). Organic carbon storage in soils of the Basque Country (Spain): the effect of climate, vegetation type, and edaphic variables. Biology and Fertility of Soils, 37: 154-162.
  • Grigal, D. F. and Ohmann, L. F. (1992). Carbon storage in upland forests of the Lake States. Soil Science Society of America Journal, 56: 935-943. https://doi.org/10.2136/sssaj1992.03615995005600030042x
  • Gonzalez Parra, J. and Candas, M. (2004). Organic matter in soils under evergreen oaks Carbon and nitrogen mineralization. Forest Systems, 13: 75-83. https://doi.org/10.5424/srf/200413S1-00856
  • Hernanz, J. L., Sanchez-Giron, V. and Navarrete, L. (2009). Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agriculture Ecosystems Environment, 133: 114-122. https://doi.org/10.1016/j.agee.2009.05.009
  • Homann, P. S., Sollins, P., Chappell, H. N. and Stangenberger, A. G. (1995). Soil organic carbon in a mountainous, forested region: relation to site characteristics. Soil Science Society of America Journal, 59: 468-1475. https://doi.org/10.2136/sssaj1995.03615995005900050037x
  • Homann, P. S., Remillard, S. M., Harmon, M. E. and Bormann, B. (2004). Carbon storage in coarse and fine fractions of Pacific Northwest old-growth forest soils. Soil Science Society of America Journal, 68: 2023-2030. https://doi.org/10.2136/sssaj2004.2023
  • Homann, P. S., Kapchinske, J. S. and Boyce, A. (2007). Relations of mineral-soil C and N to climate and texture: regional differences within the conterminous USA. Biogeochemistry, 85: 303-316.
  • Hontoria, C., Rodriguez-Murillo, J. C. and Saa, A. (1999). Relationships between soil organic carbon and site characteristics in peninsular Spain. Soil Science Society of America Journal, 63: 614-621.
  • Jenkinson, D. S. (1990). The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society of London B, 329: 361-368.
  • Jiao, Y., Zhu, X. U., Jiaohong, Z. and Wenzhu, Y. (2012). Changes in soil carbon stocks and related soil properties along a 50 year grassland to cropland conversion chronosequence in an agropastoral ecotone of Inner Mongolia, China. Journal of Arid Land, 4: 420-430.
  • John, B., Yamashita, T., Ludwig, B. and Flessa, H. (2005). Storage of organic carbon in aggregate and density fractions of soils under different types of land use. Geoderma, 128: 63-79.
  • Kashi, H., Abdipoor, M. and Arastoo, B. (2016). Impacts of land use changes on soil carbon and nitrogen stocks case study: Shahmirzad lands, semnan province, Iran. Journal of Rangeland Science, 6 (2): 156-166.
  • Kelliher, F. M., Condron, L. M., Cook, F. J. and Black, A. (2012). Sixty years of seasonal irrigation affects carbon storage in soils beneath pasture grazed by sheep. Agriculture Ecosystems and Environment, 148: 29-36.
  • Krull, E. S., Baldock, J. A. and Skjemstad, J. O. (2003). Importance of mechanisms and processes of the stabilization of soil organic matter for modeling carbon turnover. Functional Plant Biology, 30(2): 207-222.
  • Lal, R. and Follett, R. F. (2009). Soil Carbon Sequestration and the Greenhouse Effect, 2nd edition. Soils and climate change. Soil Science Society of America Publishing: Madison WI, P: 410.
  • Leifeld, J., Bassin, S. and Fuhrer, J. (2005). Carbon Stocks in Swiss agricultural soils predicted by land–use soil characteristics and altitude. Agriculture Ecosystems and Environment, 105: 255-266.
  • Lemenih M. and Itanna, F. (2004). Soil carbon stock and turnovers in various vegetation types and arable lands along an elevation gradient in southern Ethiopia. Geoderma, 123: 177-188.
  • Liski J. and Westman, C. J. (1997). Carbon storage in forest soil of Finland 1. Effect of thermoclimate. Biogeochemistry, 36: 239-260.
  • Maynard, A. A. (2000). Compost: the process and research The Connecticut Agricultural Experimental Research Station. New Haven Bulletin, 966: 1-14.
  • McGeehan, S. L. and Naylor, D. V. (1988). Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Communications in Soil Science and Plant Analysis, 19(4): 493-505.
  • McLauchlan, K. K. (2006). Effect of soil texture on soil carbon and nitrogen dynamic after cessation of agriculture. Geoderma, 136: 289-299.
  • MGM (2022). General Directorate of Meteorology. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=IZMIR. (Accessed Date: 22.04.2022).
  • Miller, A. J., Amundson, R., Burke, I. C. and, Yonker, C. (2004). The effect of climate and cultivation on soil organic C and N. Biogeochemistry, 67: 57-72.
  • Nichols, J. D. (1984). Relation of organic carbon to soil properties and climate in the Southern Great Plains. Soil Science Society of America Journal, 48: 1382-1384.
  • Ouedraogo, E., Mando, A. and Stroosnijder, L. (2006). Effects of tillage, organic resources, and nitrogen fertilizer on soil carbon dynamics and crop nitrogen uptake in semi-arid West Africa. Soil Tillage Research, 91: 57-67.
  • Parras-Alcantara, L., Martin-Carrillo, M. and Lozano-Garcia, B. (2013). Impacts of land-use change in soil carbon and nitrogen in a Mediterranean agricultural area (Southern Spain). Solid Earth, 4: 167-177.
  • Paruelo, J. M., Jobbagy, E. G., Salao, O. E., Lauenroth, W. K. and Burke, I. C. (1998). Functional and structural convergence of temperate grassland and shrubland ecosystems. Ecological Applications, 8: 194-206.
  • Parton, W. J., Schimel, D. S., Cole, C. V. and Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels on Great Plains grasslands. Soil Science Society of America Journal, 51: 1173-1179.
  • Percival, H. J., Parfitt, R. L. and Scott, N. A. (2000). Factors controlling soil carbon levels in New Zealand grasslands: is clay content important?. Soil Science Society of America Journal, 64(50): 1623-1630.
  • Pepper, D. A., Del Grosso, S. J., McMurtrie, R. E. and Parton, W. J. (2005). Simulated carbon sink response of shortgrass steppe, tallgrass prairie, and forest ecosystems to rising [CO2], temperature, and nitrogen input. Global Biogeochem Cycles, 19(1): GB1004.
  • Puget, P. and Lal, R. (2005). Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Tillage Research, 80: 201-213.
  • Plante, A., Conant, R. T., Stewart, C. E., Paustian, K. and Six, J. (2006). Impact of Soil Texture on the Distribution of Soil Organic Matter in Physical and Chemical Fractions. Soil Science Society of America Journal, 70: 287-296.
  • Post, W. M., Emmanuel, W. R., Zinke, P. J. and Stangenberger, A. G. (1982). Soil carbon pools and World life zones. Nature, 298: 156-159.
  • Post, W. M. and Kwon, K. C. (2000). Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 6: 317-327.
  • Prather, M., Derwent, R. and Ehhait, D. (1995). Other Trace Gases And Atmospheric Chemistry. In: Climate change 1994: radioactive forcing of climate change and the IPCC IS92 emission scenarios. (Eds JT Houghton et al.) Cambridge University Publishing: England, p. 73-126.
  • Ozturkmen, A. R., Ramazanoglu, E., Almaca, A. and Cakmali, M. (2020). Effect of intercropping on soil physical and chemical properties in an olive orchard. Applied Ecology and Environmental Research, 18(6): 7783-7793.
  • Ozturkmen, A. R. and Ramazanoglu, E. (2020). Effects of different land uses on some physical and chemical properties of soils originated from the volcanic parent materials. Fresenius Environmental Bulletin, 2(12A): 11450-11460.
  • Ozturkmen, A. R., Ramazanoglu, E., Celik, A. and Arslan, M. (2021). Effects of different land use on some soil properties in adıyaman province. European Journal of Science and Technology, 25: 594-600.
  • Sainju, U. M., Senwo, Z. N., Nyakatawa, E. Z., Tazisong, I. A. and Reddy, K. C. (2008). Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping systems, and nitrogen fertilizer sources. Agriculture Ecosystems and Environment, 127: 234-240.
  • Sakin, E., Deliboran, A., Sakin, E. D. and Tutar, E. (2010). Carbon Stocks in Harran Plain Soils, Sanliurfa, Turkey. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3): 151-156.
  • Sakin, E., Deliboran, A. and Tutar, E. (2011a). Bulk density of Harran plain soils in relation to other soil properties. African Journal of Agricultural Research, 6(7): 1750-1757.
  • Sakin, E., Deliboran, A., Sakin, E. D. and Aslan, H. (2011b). Carbon and nitrogen stocks and C: N ratios of Harran Plain soils. Romanian Agricultural Research, 28: 171-180.
  • Sakin, E. (2012). Relationships between carbon, nitrogen stocks, and texture of the Harran Plain soils in southeastern Turkey. Bulgarian Journal of Agricultural Sciences, 18(4): 626-634.
  • Sakin, E., Sakin, E. D. (2014). Important of Ratio C: N With Carbon and Nitrogen Amounts at Soils. International Mesopotamia Agriculture Congress, 22-25 September, P. 273-275, Diyarbakir, Türkiye.
  • Schipper, L. A., Dodd, M. B., Pronger, J., Mudge, P. L., Upsell, M., Moss, R. A. (2012). Decadal changes in soil carbon and nitrogen under a range of irrigation and phosphorus fertilizer treatments. Soil Science Society of America Journal, 77: 246-256.
  • Schlesinger, W. H. (1997). Biogeochemistry, An Analysis of Global Change, 2nd ed., P. 588, Cambridge University Publisng, New York.
  • Sims, Z. R., Nielsen, G. A. (1986). Organic carbon in Montana soils is related to clay content and climate. Soil Science Society of America Journal, 50: 1269-1271.
  • Seeber, J. and Seeber. G. U. H. (2005). Effects of landuse changes on humus forms on alpine pastureland (Central Alps, Tyrol). Geoderma, 124: 15-222.
  • Smith, P. (2008). Land-use change and soil organic carbon Dynamics. Nutrient Cycling Agroecosystems, 81: 169-178.
  • Turan, H. S., Aydogdu, E., Pekcan T. and Colakoglu, H. (2013). Relationships of olive groves in the West Anatolia region of Turkey’, Communications in Soil Science and Plant Analysis, 44: 80-88.
  • Tremblay, S., Ouimet, R. and Houle, D. (2002). Prediction of organic carbon content in upland forest soils of Quebec, Canada. Canadian Journal of Forest Research, 32: 903-914.
  • Tuzuner, A. (1990). Soil and Water Analysis Handbook. Ministry of Agriculture, Forestry and Rural Affairs General Directorate of Rural Services Publishing, P.16, Ankara.
  • Tisdale, S. L., Nelson, W. L. and Beaton, J. D. (1985). Soil Fertility and Fertilizers. 4th Edition, P.188-239, Macmillan Publishing, New York.
  • Yano, Y., Mcdowel, W. H. and Aber, J. D. (2000). Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition. Soil Biology and Biochemistry, 32: 1743-1751.
  • Yamashita, T., Feiner, H., Bettina, J., Helfrich, M. and Ludwig, B. (2006). Organic matter in density fractions of water-stable aggregates in silty soils: effect of land use. Soil Biology and Biochemistry, 38: 3222-3234.
  • Yimer, F., Ledin, S. and Abdelkadir, A. (2007). Changes in soil organic carbon and total nitrogen contents in three adjacent land use types in the Bale Mountains, southeastern highlands of Ethiopia. Forest Ecology Management, 242: 337-342.
  • Wang, S., Huang, M., Shao, X. and Mickler, R.A. (2004). Vertical distribition of soil organic carbon in China. Environmental Management, 33: 200-209.
  • Zhang, T., Wang, Y., Wang, X., Wang, Q. and Han, J. (2009). Organic carbon and nitrogen stocks in reed meadow soils converted to alfalfa fields. Soil Tillage Research, 105: 143-148.
  • Zhang, C. H., Wang, Z. M., Ju, W. M. and Ren, C. Y. (2011). Spatial and temporal variability of soil C/N ratio in Songnen Plain maize belt. Environmental Science, 32(5): 1407-1414.
There are 85 citations in total.

Details

Primary Language English
Subjects Plant Nutrition and Soil Fertility
Journal Section Articles
Authors

Aişe Deliboran 0000-0002-0816-9535

Project Number 2015-30-06-20-003
Early Pub Date January 24, 2024
Publication Date January 30, 2024
Submission Date January 20, 2023
Acceptance Date June 3, 2023
Published in Issue Year 2024

Cite

APA Deliboran, A. (2024). Carbon and Nitrogen Stocks of Olive Orchard Soils in Izmir Province. Tekirdağ Ziraat Fakültesi Dergisi, 21(1), 111-124. https://doi.org/10.33462/jotaf.1239715
AMA Deliboran A. Carbon and Nitrogen Stocks of Olive Orchard Soils in Izmir Province. JOTAF. January 2024;21(1):111-124. doi:10.33462/jotaf.1239715
Chicago Deliboran, Aişe. “Carbon and Nitrogen Stocks of Olive Orchard Soils in Izmir Province”. Tekirdağ Ziraat Fakültesi Dergisi 21, no. 1 (January 2024): 111-24. https://doi.org/10.33462/jotaf.1239715.
EndNote Deliboran A (January 1, 2024) Carbon and Nitrogen Stocks of Olive Orchard Soils in Izmir Province. Tekirdağ Ziraat Fakültesi Dergisi 21 1 111–124.
IEEE A. Deliboran, “Carbon and Nitrogen Stocks of Olive Orchard Soils in Izmir Province”, JOTAF, vol. 21, no. 1, pp. 111–124, 2024, doi: 10.33462/jotaf.1239715.
ISNAD Deliboran, Aişe. “Carbon and Nitrogen Stocks of Olive Orchard Soils in Izmir Province”. Tekirdağ Ziraat Fakültesi Dergisi 21/1 (January 2024), 111-124. https://doi.org/10.33462/jotaf.1239715.
JAMA Deliboran A. Carbon and Nitrogen Stocks of Olive Orchard Soils in Izmir Province. JOTAF. 2024;21:111–124.
MLA Deliboran, Aişe. “Carbon and Nitrogen Stocks of Olive Orchard Soils in Izmir Province”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 21, no. 1, 2024, pp. 111-24, doi:10.33462/jotaf.1239715.
Vancouver Deliboran A. Carbon and Nitrogen Stocks of Olive Orchard Soils in Izmir Province. JOTAF. 2024;21(1):111-24.