Research Article
BibTex RIS Cite

Yield and Water Use of Eggplants (Solanum melongena L.) Under Different Irrigation Regimes and Fertilizers

Year 2021, Volume: 18 Issue: 3, 533 - 544, 07.09.2021
https://doi.org/10.33462/jotaf.857908

Abstract

Bu çalışmanın amacı, üç farklı gübre ve dört farklı düzeydeki sulama suyu miktarlarının patlıcan bitkisinin verimine, kalitesine ve su-verim ilişkisine etkisini belirlemektir. Araştırma, Bandırma koşullarında 2017 ve 2018 yıllarında patlıcan bitkisinin yetişme sezonu boyunca yürütülmüştür. Çalışmada; 3 farklı gübre ve 4 farklı sulama düzeyi kullanılmıştır. Gübre konuları, kimyasal gübre CHF; N, P, K (20-20-20+15 SO3) 40 kg da-1 olarak eklendi, organik gübre (OF) 2000 kg da-1 olarak eklendi ve gelişmiş organik gübre (DOF) 2000 kg da-1 olarak eklenmiştir. Dört farklı sulama konusu ise A Sınıfı Buharlaşma Kabı’ndan oluşan buharlaşmanın % 100 (I100, kontrol), %80 (I80), %60 (I60) ve %40 (I40)'nın verilmesi şeklinde oluşturulmuştur. Sulama suyu miktarı 2017 ve 2018 yıllarında sırasıyla 122 - 305 mm ile ve 147 - 360 mm ve bitki su tüketimi araştırma 2017 ve 2018 yılları için sırasıyla 264 - 447 mm ve 217 - 436 mm arasında değişmeştir. Araştırma sonucuna göre patlıcanın verim değerleri üzerine sulama suyu konusunun etkisi istatiksel olarak önemli bulunmuştur (P<0.05). Gübre uygulaması ve sulama konusu x gübre interaksiyonu etkisinin önemsiz olduğu belirlenmiştir. Araştırmada en yüksek meyve verimi, 2017 ve 2018 yıllarında sırasıyla 3681 kg da-1 ve 4515 kg da-1 ile I100 sulama konusundan, en düşük meyve verimi ise sırasıyla 3021 kg da-1 ve 2792 kg da-1 ile I40 sulama konusunda elde edilmiştir. Gübre uygulamalarında her sulama konusu için en yüksek verim 3462 ve 3878 kg da-1 DOF uygulamasında ve en düşük verim ise 3258 ve 3629 kg da-1 OF gübre uygulamasında elde edilmiştir. Deneme yıllarında su kullanım randamanı (WUE) 8.26 ile 12.54 kg mm-1, sulama suyu kullanım randamanı (IWUE) ise 11.9 ile 25.68 kg mm-1 arasında değişmiştir. Bu nedenle sulama programlamasında Kcp3: 0.80 bitki katsayısı ve DOF gübre uygulamasında yetiştirilen patlıcan için önerebiliriz.

References

  • Abdrabbo, M. A. A.; Saleh. S. M. and Hashem, F. A., 2017. Eggplant Production under Deficit Irrigation and Polyethylene Mulch. Egypt. J. of Appl. Sci., 32 (7) 148-161.
  • Allen, R.G., Pereira, L.S., Raes, D., Smith, M., (1998). Crop Evapotranspiration Guidelines for Computing Crop Water Requirements, Irrigation and Drainage. Paper No: 56, FAO, Rome, p. 300.
  • Aminifard, M., Aroiee, H., Fatemi, H., Ameri, , A., Karimpour, S., (2010). Responses of Eggplant (Solanum melongena L.) to Different Rates of Nitrogen under Field Conditions. Journal of Central European Agriculture. 11 (4) P: 453-458.
  • Amiri, E., Gohari, A., and Esmailian, Y., (2012). Effect of Irrigation and Nitrogen on Yield, Yield Components and Water Use Efficiency of Eggplant. African Journal of Biotechnology Vol. 11(13), pp. 3070-3079. Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.2450 ISSN 1684–5315 © 2012 Academic.
  • Anonymous, (2017). http://www.bandirma.gov.tr/iklim-ve-cografi-konum.
  • Aujla, MS., Thind, HS., and Buttar, GS., (2007). Fruit Yield and Water Use Efficiency of Eggplant (Solanum Melongema L.) as Influenced by Different Quantities of Nitrogen and Water Applied Through Drip and Furrow Irrigation. Scientia Horticulturae 112 (2007) 142-148.
  • Ayas, S., (2017). The Effects of Irrigation Regimes on the Yield and Water Use of Eggplant (Solanum melongena L.) Toprak Su Dergisi, 6 (2): 49-58.
  • Bafeel, SO., Moftah, AE., 2008. Physiological Response of Eggplants Grown under Different Irrigation Regimes to Anti transplant treatments. Saudi J. Biol. Sci. 15(2): 259-267.
  • Behboudian, M.H. (1977). Responses of Eggplant to Drought. I. Plant water Balance. Sci. Hort. 7:303–310.
  • Birhanu, K., and Tilahun, K., (2010). Fruit Yield and Quality of Drip-Irrigated Tomato under Deficit Irrigation. African Journal of Food, Agriculture, Nutrition and Development; 10(2), 2139-2157.
  • Bloch, D., Hoffmann, C.M., Marlander, B., (2006). Impact of Water Supply On Photosynthesis, Water Use and Carbon Isotope Discrimination of Sugar beet genotypes. Eur. J. Agron. 24, 218–225.
  • Chaves, M.M., Maroco, J.P., Pereira, J.S., (2003). Understanding Plant Responses Todrought From Genes to Whole Plant. Funct. Plant Biol. 30, 23–264.
  • Çolak, Y.B., Yazar, A., Çolak, İ., Akça, H., Duraktekin, G., (2017). Evaluation of Crop Water Stress Index (CWSI) for Eggplant Undervarying Irrigation Regimes Using Surface and Subsurface Drip Systems. Agriculture and Agricultural Science Procedia 4(1), 372 – 382.
  • De, C., Jun Jie, H. and Kui C., (1996). Studies on Fertilizer Application Levels of Seedling Stage of Eggplant Raised with Mixed Media. China Vegetables, 4: 16-18.
  • Demirel, K., Genc, L., Bahar, E., Inalpulat, M., Smith, S., & Kizil, U., (2014). Yield Estimate Using Spectral Indices in Eggplant and Bell Pepper Grown Under Deficit Irrigation. Fresenius Environ. Bull, 23, 1232-1237.
  • Demirel, K., Genç, L., Saçan, M. (2012). Yarı Kurak Koşullarda Farklı Sulama Düzeylerinin Salçalık Biberde (Capsicum Annum Cv. Kapija) Verim ve Kalite Parametreleri Üzerine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 9(2):7-15
  • DePascale, S., R. Tamburrino, A. Maggio, G. Barbieri, B. Fogliano and R. Pernice., (2006). Effect of Nitrogen Fertilization on the Nutritional Value of Organically and Conventionally Grown Tomatoes. Acta Hortic. 700: 107-110.
  • Diaz-Perez, J., (2015). Eggplant (Solanum melongena L.) Plant Growth and Fruit Yield as Affected by Drip Irrigation Rate. HORTSCIENCE 50(11):1709–1714.
  • Dinh Hoa Vu., (2008). Effect of Organic Fertilizer on Fruit Yield and Quality of Eggplant (Solanum melongena L.). In AGRIS since, 13(3):137-142.
  • Doorenbos, J., Pruitt, W.O., (1977). Guidelines for Predict of Water Requirement. Irrigation and Drainage No. 24, FAO, Rome, p. 144.
  • El-Miniawy, S., (2015). Growth and Yield of Eggplant Grown under Drought Stress Conditions and Different Potassium Fertilizer Rates. Middle East Journal of Agriculture Research ISSN 2077-4605 Volume: 04 | Issue: 04 | Oct.-Dec. P :1113-1124.
  • English, M.J., (1990). Deficit Irrigation: Analytical Framework. J. Irrig. Drain. Eng. 116(1), 399-412.
  • Ertek, A., Kanber, R., (2003). Effects of Different Drip Irrigation Programs on the Boll Number and Shedding Percentage and Yield of Cotton. Agric. Water Manage. 60, 1–11.
  • Ertek, A., Sensoy, S., Kucukyumuk, C., Gedik, I., (2006). Determination of Plant-pan Coefficients for Field-Grown Eggplant (Solanum melongena L.) Using Class, A pan Evaporation values. Agric.Water Manage., (85): 58–66.
  • Fereres, E., Soriano, M. A., (2007). Deficit Irrigatıon for Reducing Agricultural Water Use. Journal of Experimental Botany. 58(2), 147-159.
  • Gaelen, H., (2012). Validation of The Aqua Crop Model for Irrigated African Eggplant (Solanum macrocarpon) at the Unza Field Station. The University of Zambia Lusaka: 99(1).
  • Garrity, P.D., Watts, D.G., Sullivan, C.Y., Gilley, J.R., (1982). Moisture Deficits and Grain Sorghum Performance: Evapotranspiration–yield Relationships. Agron. J. 74, 815–820.
  • Gaveh, E. A., Timpo, G. M., Agodzo, S. K. and Shin, D. H., (2011). Effect of Irrigation, Transplant Age and Season on Growth, Yield and Irrigation Water Use Efficiency of the African Eggplant. Hort. Environ. Biotechnol. 52(1):13-28.
  • Gençoğlan, C., Altunbey, H., Gençoğlan, S., (2006). Response of Green Bean (P. Vulgaris L.) to Subsurface Drip İrrigation and Partial Root Zone-Drying Irrigation. Agricultural Water Management, 84(3): 274-280.
  • Hochmuth, G.J., R.C. Hochmuth, M.E. Donley and E.A. Hanlon, (1993), Eggplant yield in response to potassium fertilization in sandy soil. Hort. Science, 28(10): 1002-1005.
  • Howell, T.A., Cuence, R.H., Solomon, K.H., (1990). Crop Yield Response. In: Hoffman, G.J., et al. (Eds.), Management of Farm Irrigation Systems. ASAE, St. Joseph, MI, p. 312.
  • Ibrahim S. S., El-Midany A. A., Boulos T. R., (2010). Effect of Intensive Mechanical Stresses on Phosphate Chemistry as A Way to Increase Its Solubility for Fertilizer Application. Physicochem. Probl. Miner. Process. 44- 79-92.
  • Inalpulat, M., Genc, L., Kizil, U. and Aksu, S., 2014. Responses of Eggplant to Pruning Under Irrigation Deficiency. Int. Conf. on Biological, Civil and Environmental Engineering March 17-18, Dubai, UAE.
  • Inalpulat, M., Genc, L., Kizil, U. and Aksu, S., (2014). Responses of Eggplant to Pruning Under Irrigation Deficiency. Int. Conf. on Biological, Civil and Environmental Engineering March 17-18, Dubai, UAE.
  • James, D.W. Hanks, R. J., Jurinak, J.J., (1982). Modern Irrigation Soils. John Wiley and Sons. New York, pp 235.
  • Karam F., Sabiha R., Skaf S., Breidy J., RouphaelY. And Balendonck J., (2011). Yield and Water Use of Eggplants (Solanum Melongena L.) Under Full and Deficit Irrigation Regimes. Agricultural Water Management 98: 1307-1316.
  • Karam, F., Lahoud, R., Masaad, R., Daccache, A., Mounzer, O., Rouphael, Y., (2006). Water Use and Lint Yield Response of Drip Irrigated Cotton to the Length of Irrigation Season. Agric. Water Manage. 85(3), 287-295.
  • Kırnak, H., Kaya, C., Tas, I., Higgs, D., (2001).The Influence of Water Deficit on Vegetative Growth, Physiology, Fruit Yield and Quality in Eggplants. Bulgarian J. Plant Physiol. 27(3-4): 34-46.
  • Kırnak, H., Tas¸, ˙I., Kaya, C., Higgs, D., (2002). Effects of Deficit Irrigation on Growth, Yield and Fruit Quality of Eggplant under Semi-Arid Conditions. Aust. J. Agric. Res. 53, 1367–1373.
  • Kirda C., (2002). Deficit Irrigation Scheduling Based on Plant Growth Stages Showing Water Stress Tolerance. Deficit Irrigation Practice. Water Rep. Rome FAO, 22: 3-10.
  • Louisa MA, Taguiling G., (2016). Response of Some Vegetable Plants to Green Biomass Enriched Compost. IOSR Journal of Agriculture and Veterinary Science (IOSRJAVS). 9(5):67-74 [e-ISSN: 2319-2380] [p-ISSN: 2319-2372] Available: www.iosrjournals.org.
  • Lovelli, S., Perniola, M., Ferrara, A., Tommaso, T., (2007). Yield response factor to water (ky) and water use efficiency of Carthamus Tinctorius L. And Solanum melongena L. Agricultural Water Management, (92):73-80.
  • Mohawesh, O. and Karajeh, M., (2014). Effects of Deficit Irrigation on Tomato and Eggplant and Their Infection with the Root-Knot Nematode under Controlled Environmental Conditions. Archives of Agronomy and Soil Science, 2014 Vol. 60, No. 8: 1091–1101.
  • Morris, M., Kelly, VA., Kopicki, RJ. and Byerlee, D., (2007). Fertilizer use in African Agriculture: Lessons learned and good practice guidelines. Washington, DC: The World Bank. The Rain Forest Area of Nigeria. Applied Tropical Agriculture. 5:20-23.
  • Naderi, R., Bijanzadeh, E., 2014. Organic amendments and nitrogen effects on growth and chemical composition of two cultivars of safflower (Carthamus tinctorius L.) Australian Journal of Crop Science. 8(4):577-581.
  • Özbek, Ö. and Kaman, H., 2017. Yarı ıslatmalı sulamayla patlıcan yetiştiriciliği. Akademik Ziraat Dergisi Cilt:6 Özel Sayı:289-296.
  • Pereira, L.S., Oweis, T., Zairi, A., (2002). Irrigation Management under Water Carcity. Agric. Water Manage. 57, 175-206.
  • Rosati A, Badeck FW, dejong TM (2001). Estimating Canopy Light Interception and Absorption Using Leaf Mass Per Unit Leaf Area in Solanum melongena. Ann. Bot. 88: 101-109.
  • Steel, R.G.D., Torrie, J.H., (1980). Principles and Procedures of Statistics, second ed. McGraw-Hill, New York.
  • Şenyiğit, U., Kadayifci, A., Ozdemir, F. O., OZ, H., and Atilgan, A.,(2011). Effects of Different Irrigation Programs on Yield and Quality Parameters of Eggplant (Solanum melongena L.) Under Greenhouse Conditions Department of Agricultural Structure and Irrigation, Faculty of Agriculture, Suleyman Demirel University. No: 32260, Isparta.
  • Tanner, C.B., Sinclair, T.R., (1983). Efficient Water Use in Crop Production: research or re-search? In: Taylor, H.M., et al. (Eds.), Limitations to Efficient Water Use in Crop Production. ASA, Madison, WI, pp. 1–27.
  • Tole, I., Habermehl-Cwirzen, K. and Cwirzen, A., (2019). Mechanochemical Activation of Natural Clay Minerals: An Alternative to Produce Sustainable Cementitious Binders. Mineralogy and Petrology. 113: 449–462.
  • Ünlükara, A., Kurunc¸ A., Kesmez, G., Yurtseven, E., AND Suarez, D., (2010) Effects of Salinity on Eggplant (Solanum Melongena L.) Growth and Evapotranspiration. Irrig. and Drain. 59: 203–214.
  • Yenigün, S.D., Erdem, T., (2019). Determination of Water Use Characteristics of Eggplant in Tekirdağ Conditions. Tekirdağ Ziraat Fakültesi Dergisi.16(2): 19-30
  • Yıldırım, M., (2015). Water and Radiation Use Efficiency of Eggplant Under None Water Stress Condition in Semi–Arid Region. ÇOMÜ Zir. Fak. Derg. (COMU J. Agric. Fac.) 3 (2): 71–77.

Yield and Water Use of Eggplants (Solanum melongena L.) Under Different Irrigation Regimes and Fertilizers

Year 2021, Volume: 18 Issue: 3, 533 - 544, 07.09.2021
https://doi.org/10.33462/jotaf.857908

Abstract

This study was conducted ın Bandırma (Balıkesir, Turkey) during the growing season of the plant in 2017 and 2018 to determine the effect of four levels of irrigation water and three kinds of fertilizer on yield and water use of field-grown eggplant (solanum melongena). Treatments included four irrigation regimes, which were 100% (I100, control), 80% (I80), 60% (I60), and 40% (I40) of evaporation from Class A Pan and three different fertilizers, which were chemical fertilizer CHF; N, P, K (20-20-20+15 SO3) added as 40 kg da-1 organic fertilizer (OF) added as 2000 kg da-1 and developed organic fertilizer (DOF) added as 2000 kg da-1. Total irrigation water of 305 mm and 360 mm were applied to I100 irrigation treatment, in which water use was determined as 447 mm and 436 mm, respectively. In both experiment years, the effect of irrigation level on fruit yield was found to be significant statistically (p<0.05) but the effect of fertilizers treatments and irrigation x fertilizer interaction was insignificant (p>0.05). The highest yield with 3681and 4515 kg da-1 was harvested from I100 irrigation treatment, and the lowest yield with 3021 and 2792 kg da-1 from I40 irrigation treatment, respectively. As for fertilizer, the highest yield with 3462 and 3878 kg da-1 was harvested from DOF, while the lowest yield with 3258 and 3629 kg da-1 from OF, respectively. Water use efficiency (WUE) ranged from 8.26 to 12.54 kg mm-1 and irrigation water use efficiency (IWUE) from 11.9 to 25.68 kg mm-1 in the experimental years. Thus, in irrigation programming, the Kcp3: 0.80 plant-pan coefficient and in fertilizer application, DOF is recommended for field-grown eggplant.

References

  • Abdrabbo, M. A. A.; Saleh. S. M. and Hashem, F. A., 2017. Eggplant Production under Deficit Irrigation and Polyethylene Mulch. Egypt. J. of Appl. Sci., 32 (7) 148-161.
  • Allen, R.G., Pereira, L.S., Raes, D., Smith, M., (1998). Crop Evapotranspiration Guidelines for Computing Crop Water Requirements, Irrigation and Drainage. Paper No: 56, FAO, Rome, p. 300.
  • Aminifard, M., Aroiee, H., Fatemi, H., Ameri, , A., Karimpour, S., (2010). Responses of Eggplant (Solanum melongena L.) to Different Rates of Nitrogen under Field Conditions. Journal of Central European Agriculture. 11 (4) P: 453-458.
  • Amiri, E., Gohari, A., and Esmailian, Y., (2012). Effect of Irrigation and Nitrogen on Yield, Yield Components and Water Use Efficiency of Eggplant. African Journal of Biotechnology Vol. 11(13), pp. 3070-3079. Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.2450 ISSN 1684–5315 © 2012 Academic.
  • Anonymous, (2017). http://www.bandirma.gov.tr/iklim-ve-cografi-konum.
  • Aujla, MS., Thind, HS., and Buttar, GS., (2007). Fruit Yield and Water Use Efficiency of Eggplant (Solanum Melongema L.) as Influenced by Different Quantities of Nitrogen and Water Applied Through Drip and Furrow Irrigation. Scientia Horticulturae 112 (2007) 142-148.
  • Ayas, S., (2017). The Effects of Irrigation Regimes on the Yield and Water Use of Eggplant (Solanum melongena L.) Toprak Su Dergisi, 6 (2): 49-58.
  • Bafeel, SO., Moftah, AE., 2008. Physiological Response of Eggplants Grown under Different Irrigation Regimes to Anti transplant treatments. Saudi J. Biol. Sci. 15(2): 259-267.
  • Behboudian, M.H. (1977). Responses of Eggplant to Drought. I. Plant water Balance. Sci. Hort. 7:303–310.
  • Birhanu, K., and Tilahun, K., (2010). Fruit Yield and Quality of Drip-Irrigated Tomato under Deficit Irrigation. African Journal of Food, Agriculture, Nutrition and Development; 10(2), 2139-2157.
  • Bloch, D., Hoffmann, C.M., Marlander, B., (2006). Impact of Water Supply On Photosynthesis, Water Use and Carbon Isotope Discrimination of Sugar beet genotypes. Eur. J. Agron. 24, 218–225.
  • Chaves, M.M., Maroco, J.P., Pereira, J.S., (2003). Understanding Plant Responses Todrought From Genes to Whole Plant. Funct. Plant Biol. 30, 23–264.
  • Çolak, Y.B., Yazar, A., Çolak, İ., Akça, H., Duraktekin, G., (2017). Evaluation of Crop Water Stress Index (CWSI) for Eggplant Undervarying Irrigation Regimes Using Surface and Subsurface Drip Systems. Agriculture and Agricultural Science Procedia 4(1), 372 – 382.
  • De, C., Jun Jie, H. and Kui C., (1996). Studies on Fertilizer Application Levels of Seedling Stage of Eggplant Raised with Mixed Media. China Vegetables, 4: 16-18.
  • Demirel, K., Genc, L., Bahar, E., Inalpulat, M., Smith, S., & Kizil, U., (2014). Yield Estimate Using Spectral Indices in Eggplant and Bell Pepper Grown Under Deficit Irrigation. Fresenius Environ. Bull, 23, 1232-1237.
  • Demirel, K., Genç, L., Saçan, M. (2012). Yarı Kurak Koşullarda Farklı Sulama Düzeylerinin Salçalık Biberde (Capsicum Annum Cv. Kapija) Verim ve Kalite Parametreleri Üzerine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 9(2):7-15
  • DePascale, S., R. Tamburrino, A. Maggio, G. Barbieri, B. Fogliano and R. Pernice., (2006). Effect of Nitrogen Fertilization on the Nutritional Value of Organically and Conventionally Grown Tomatoes. Acta Hortic. 700: 107-110.
  • Diaz-Perez, J., (2015). Eggplant (Solanum melongena L.) Plant Growth and Fruit Yield as Affected by Drip Irrigation Rate. HORTSCIENCE 50(11):1709–1714.
  • Dinh Hoa Vu., (2008). Effect of Organic Fertilizer on Fruit Yield and Quality of Eggplant (Solanum melongena L.). In AGRIS since, 13(3):137-142.
  • Doorenbos, J., Pruitt, W.O., (1977). Guidelines for Predict of Water Requirement. Irrigation and Drainage No. 24, FAO, Rome, p. 144.
  • El-Miniawy, S., (2015). Growth and Yield of Eggplant Grown under Drought Stress Conditions and Different Potassium Fertilizer Rates. Middle East Journal of Agriculture Research ISSN 2077-4605 Volume: 04 | Issue: 04 | Oct.-Dec. P :1113-1124.
  • English, M.J., (1990). Deficit Irrigation: Analytical Framework. J. Irrig. Drain. Eng. 116(1), 399-412.
  • Ertek, A., Kanber, R., (2003). Effects of Different Drip Irrigation Programs on the Boll Number and Shedding Percentage and Yield of Cotton. Agric. Water Manage. 60, 1–11.
  • Ertek, A., Sensoy, S., Kucukyumuk, C., Gedik, I., (2006). Determination of Plant-pan Coefficients for Field-Grown Eggplant (Solanum melongena L.) Using Class, A pan Evaporation values. Agric.Water Manage., (85): 58–66.
  • Fereres, E., Soriano, M. A., (2007). Deficit Irrigatıon for Reducing Agricultural Water Use. Journal of Experimental Botany. 58(2), 147-159.
  • Gaelen, H., (2012). Validation of The Aqua Crop Model for Irrigated African Eggplant (Solanum macrocarpon) at the Unza Field Station. The University of Zambia Lusaka: 99(1).
  • Garrity, P.D., Watts, D.G., Sullivan, C.Y., Gilley, J.R., (1982). Moisture Deficits and Grain Sorghum Performance: Evapotranspiration–yield Relationships. Agron. J. 74, 815–820.
  • Gaveh, E. A., Timpo, G. M., Agodzo, S. K. and Shin, D. H., (2011). Effect of Irrigation, Transplant Age and Season on Growth, Yield and Irrigation Water Use Efficiency of the African Eggplant. Hort. Environ. Biotechnol. 52(1):13-28.
  • Gençoğlan, C., Altunbey, H., Gençoğlan, S., (2006). Response of Green Bean (P. Vulgaris L.) to Subsurface Drip İrrigation and Partial Root Zone-Drying Irrigation. Agricultural Water Management, 84(3): 274-280.
  • Hochmuth, G.J., R.C. Hochmuth, M.E. Donley and E.A. Hanlon, (1993), Eggplant yield in response to potassium fertilization in sandy soil. Hort. Science, 28(10): 1002-1005.
  • Howell, T.A., Cuence, R.H., Solomon, K.H., (1990). Crop Yield Response. In: Hoffman, G.J., et al. (Eds.), Management of Farm Irrigation Systems. ASAE, St. Joseph, MI, p. 312.
  • Ibrahim S. S., El-Midany A. A., Boulos T. R., (2010). Effect of Intensive Mechanical Stresses on Phosphate Chemistry as A Way to Increase Its Solubility for Fertilizer Application. Physicochem. Probl. Miner. Process. 44- 79-92.
  • Inalpulat, M., Genc, L., Kizil, U. and Aksu, S., 2014. Responses of Eggplant to Pruning Under Irrigation Deficiency. Int. Conf. on Biological, Civil and Environmental Engineering March 17-18, Dubai, UAE.
  • Inalpulat, M., Genc, L., Kizil, U. and Aksu, S., (2014). Responses of Eggplant to Pruning Under Irrigation Deficiency. Int. Conf. on Biological, Civil and Environmental Engineering March 17-18, Dubai, UAE.
  • James, D.W. Hanks, R. J., Jurinak, J.J., (1982). Modern Irrigation Soils. John Wiley and Sons. New York, pp 235.
  • Karam F., Sabiha R., Skaf S., Breidy J., RouphaelY. And Balendonck J., (2011). Yield and Water Use of Eggplants (Solanum Melongena L.) Under Full and Deficit Irrigation Regimes. Agricultural Water Management 98: 1307-1316.
  • Karam, F., Lahoud, R., Masaad, R., Daccache, A., Mounzer, O., Rouphael, Y., (2006). Water Use and Lint Yield Response of Drip Irrigated Cotton to the Length of Irrigation Season. Agric. Water Manage. 85(3), 287-295.
  • Kırnak, H., Kaya, C., Tas, I., Higgs, D., (2001).The Influence of Water Deficit on Vegetative Growth, Physiology, Fruit Yield and Quality in Eggplants. Bulgarian J. Plant Physiol. 27(3-4): 34-46.
  • Kırnak, H., Tas¸, ˙I., Kaya, C., Higgs, D., (2002). Effects of Deficit Irrigation on Growth, Yield and Fruit Quality of Eggplant under Semi-Arid Conditions. Aust. J. Agric. Res. 53, 1367–1373.
  • Kirda C., (2002). Deficit Irrigation Scheduling Based on Plant Growth Stages Showing Water Stress Tolerance. Deficit Irrigation Practice. Water Rep. Rome FAO, 22: 3-10.
  • Louisa MA, Taguiling G., (2016). Response of Some Vegetable Plants to Green Biomass Enriched Compost. IOSR Journal of Agriculture and Veterinary Science (IOSRJAVS). 9(5):67-74 [e-ISSN: 2319-2380] [p-ISSN: 2319-2372] Available: www.iosrjournals.org.
  • Lovelli, S., Perniola, M., Ferrara, A., Tommaso, T., (2007). Yield response factor to water (ky) and water use efficiency of Carthamus Tinctorius L. And Solanum melongena L. Agricultural Water Management, (92):73-80.
  • Mohawesh, O. and Karajeh, M., (2014). Effects of Deficit Irrigation on Tomato and Eggplant and Their Infection with the Root-Knot Nematode under Controlled Environmental Conditions. Archives of Agronomy and Soil Science, 2014 Vol. 60, No. 8: 1091–1101.
  • Morris, M., Kelly, VA., Kopicki, RJ. and Byerlee, D., (2007). Fertilizer use in African Agriculture: Lessons learned and good practice guidelines. Washington, DC: The World Bank. The Rain Forest Area of Nigeria. Applied Tropical Agriculture. 5:20-23.
  • Naderi, R., Bijanzadeh, E., 2014. Organic amendments and nitrogen effects on growth and chemical composition of two cultivars of safflower (Carthamus tinctorius L.) Australian Journal of Crop Science. 8(4):577-581.
  • Özbek, Ö. and Kaman, H., 2017. Yarı ıslatmalı sulamayla patlıcan yetiştiriciliği. Akademik Ziraat Dergisi Cilt:6 Özel Sayı:289-296.
  • Pereira, L.S., Oweis, T., Zairi, A., (2002). Irrigation Management under Water Carcity. Agric. Water Manage. 57, 175-206.
  • Rosati A, Badeck FW, dejong TM (2001). Estimating Canopy Light Interception and Absorption Using Leaf Mass Per Unit Leaf Area in Solanum melongena. Ann. Bot. 88: 101-109.
  • Steel, R.G.D., Torrie, J.H., (1980). Principles and Procedures of Statistics, second ed. McGraw-Hill, New York.
  • Şenyiğit, U., Kadayifci, A., Ozdemir, F. O., OZ, H., and Atilgan, A.,(2011). Effects of Different Irrigation Programs on Yield and Quality Parameters of Eggplant (Solanum melongena L.) Under Greenhouse Conditions Department of Agricultural Structure and Irrigation, Faculty of Agriculture, Suleyman Demirel University. No: 32260, Isparta.
  • Tanner, C.B., Sinclair, T.R., (1983). Efficient Water Use in Crop Production: research or re-search? In: Taylor, H.M., et al. (Eds.), Limitations to Efficient Water Use in Crop Production. ASA, Madison, WI, pp. 1–27.
  • Tole, I., Habermehl-Cwirzen, K. and Cwirzen, A., (2019). Mechanochemical Activation of Natural Clay Minerals: An Alternative to Produce Sustainable Cementitious Binders. Mineralogy and Petrology. 113: 449–462.
  • Ünlükara, A., Kurunc¸ A., Kesmez, G., Yurtseven, E., AND Suarez, D., (2010) Effects of Salinity on Eggplant (Solanum Melongena L.) Growth and Evapotranspiration. Irrig. and Drain. 59: 203–214.
  • Yenigün, S.D., Erdem, T., (2019). Determination of Water Use Characteristics of Eggplant in Tekirdağ Conditions. Tekirdağ Ziraat Fakültesi Dergisi.16(2): 19-30
  • Yıldırım, M., (2015). Water and Radiation Use Efficiency of Eggplant Under None Water Stress Condition in Semi–Arid Region. ÇOMÜ Zir. Fak. Derg. (COMU J. Agric. Fac.) 3 (2): 71–77.
There are 55 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mahmud Ali 0000-0002-9000-8385

Cafer Gençoğlan 0000-0002-4559-4354

Serpil Gençoğlan 0000-0002-7390-8365

Ali Uçak 0000-0003-4344-2848

Publication Date September 7, 2021
Submission Date January 16, 2021
Acceptance Date April 5, 2021
Published in Issue Year 2021 Volume: 18 Issue: 3

Cite

APA Ali, M., Gençoğlan, C., Gençoğlan, S., Uçak, A. (2021). Yield and Water Use of Eggplants (Solanum melongena L.) Under Different Irrigation Regimes and Fertilizers. Tekirdağ Ziraat Fakültesi Dergisi, 18(3), 533-544. https://doi.org/10.33462/jotaf.857908
AMA Ali M, Gençoğlan C, Gençoğlan S, Uçak A. Yield and Water Use of Eggplants (Solanum melongena L.) Under Different Irrigation Regimes and Fertilizers. JOTAF. September 2021;18(3):533-544. doi:10.33462/jotaf.857908
Chicago Ali, Mahmud, Cafer Gençoğlan, Serpil Gençoğlan, and Ali Uçak. “Yield and Water Use of Eggplants (Solanum Melongena L.) Under Different Irrigation Regimes and Fertilizers”. Tekirdağ Ziraat Fakültesi Dergisi 18, no. 3 (September 2021): 533-44. https://doi.org/10.33462/jotaf.857908.
EndNote Ali M, Gençoğlan C, Gençoğlan S, Uçak A (September 1, 2021) Yield and Water Use of Eggplants (Solanum melongena L.) Under Different Irrigation Regimes and Fertilizers. Tekirdağ Ziraat Fakültesi Dergisi 18 3 533–544.
IEEE M. Ali, C. Gençoğlan, S. Gençoğlan, and A. Uçak, “Yield and Water Use of Eggplants (Solanum melongena L.) Under Different Irrigation Regimes and Fertilizers”, JOTAF, vol. 18, no. 3, pp. 533–544, 2021, doi: 10.33462/jotaf.857908.
ISNAD Ali, Mahmud et al. “Yield and Water Use of Eggplants (Solanum Melongena L.) Under Different Irrigation Regimes and Fertilizers”. Tekirdağ Ziraat Fakültesi Dergisi 18/3 (September 2021), 533-544. https://doi.org/10.33462/jotaf.857908.
JAMA Ali M, Gençoğlan C, Gençoğlan S, Uçak A. Yield and Water Use of Eggplants (Solanum melongena L.) Under Different Irrigation Regimes and Fertilizers. JOTAF. 2021;18:533–544.
MLA Ali, Mahmud et al. “Yield and Water Use of Eggplants (Solanum Melongena L.) Under Different Irrigation Regimes and Fertilizers”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 18, no. 3, 2021, pp. 533-44, doi:10.33462/jotaf.857908.
Vancouver Ali M, Gençoğlan C, Gençoğlan S, Uçak A. Yield and Water Use of Eggplants (Solanum melongena L.) Under Different Irrigation Regimes and Fertilizers. JOTAF. 2021;18(3):533-44.