Research Article
BibTex RIS Cite

Creating a Solar Radiation Measuring System (SRMS) Operated by a Programmable Logic Controller (PLC)

Year 2021, Volume: 18 Issue: 4, 675 - 688, 20.12.2021
https://doi.org/10.33462/jotaf.884717

Abstract

In this study, it is aimed to create a PLC controlled SRMS to be used in rural areas. Firstly a SRMS hardware was prepared consisting of power supply, PLC, analogue module and pyranometer units. Then, a SRMS software was written using CODESYS programming language to measure and record data and to control the hardware by PLC. SRMS software firstly collected the solar radiation in cumulatively by measuring every 30 minutes during the one-day period, and determined the daily total solar radiation. Then it calculated the daily average solar radiation by dividing the daily total solar radiation by the number of measurements. It recorded the daily total and average solar radiation amounts on the SD card. SRMS was tested in Kahramanmaraş Sütçü İmam University (KSU) during the July-November period of the 2019. The daily average solar radiation data recorded at KSU were compared with the data measured in the same period at the Eastern Mediterranean Transition Area Agricultural Research Institute (DAGTEM), located 10 km away. The daily average solar radiation data measured in KSU and DAGTEM varied between 3.63-33.48 MJ m-2 day-1 and 3.00-33.00 MJ m-2 day-1, respectively. Five-month averages of daily solar radiation data measured at both regions were determined 20.20 MJ m-2 day-1 and 19.64 MJ m-2 day-1, respectively. The difference between the mean of KSU and DAGTEM data groups was not found to be statistically significant (p> 0.05). This result revealed that the daily average solar radiation values measured in both regions can be used interchangeably. As an expression of the deviation between data groups measured in both regions, the MAPE and RMSE were determined as 14.57% and 2.68 MJ m-2 day-1. The compatibility level of the data groups was obtained as “good” (MAPE= 10-20%). It was concluded that SRMS could measure the daily average solar radiation with high accuracy and could be used in sensitive measurements.

References

  • Adams, P. (1992). Crop nutrition in hydroponics. Acta Horticulturae 323: 289–305
  • Aksoy, A., Demir, N.F., Öztürk, F.G. (2014). Agricultural Water Use and Sustainability in Turkey. 11th national agricultural economics congress. 3-5 September, P.462-469. Samsun, Turkey
  • Anjos, P.S., Silva, A.S.A., Stošić, B., Stošić, T. (2015). Long-term correlations and cross-correlations in wind speed and solar radiation temporal series from Fernando de Noronha Island, Brazil. Physica A: Statistical Mechanics and its Applications 424: 90–96
  • Anonim (2018a). Detailed information for: PM590 ETH, AX522 and DX561, https://new.abb.com/products, (Accessed date: 03.02.2018)
  • Anonim (2018b). Pyranometers MS-802/402/410/602-instruction manual, https://media. eko-eu.com/assets/media/MS-402_Manual.pdf, (Accessed date: 12.06.2018)
  • Anonim (2018c). Automation Builder V1.2.2 basic software installation, https://new.abb. com/plc/automationbuilder/platform/software, (Accessed date: 03.02.2018)
  • Avallone, E., Mioralli, P.C., Scalon, V.L., Padilha, A., Oliveira, S.D.O. (2018). Thermal pyranometer using the open hardware arduino platform. International Journal of Thermodynamics 21 (1): 1-5
  • Badran, O., Al Salaymeh, A., El Tous, Y., Abdala, W. (2010). Design and testing of an innovative solar radiation measurement device. Energy Conversion and Management 51: 1616–1620
  • Bett, P.E., Thornton, H.E. (2016). The climatological relationships between wind and solar energy supply in Britain. Renewable Energy 87: 96–110
  • Blumthaler, M., Ambach, W., Ellinger, R. (1997). Increase in solar UV radiation with altitude. Journal of Photochemistry and Photobiology B: Biology 39 (2): 130–134
  • Bora, E., Tekeli, M., Etöz, M. (2015). Temporal variations of reference evapotranspiration and measured solar radiation in the Menemen Plain. Journal of AARI 25 (2): 65–76
  • Brown, P., Russel, B. (2001). Siting and maintenance of weather stations. The University of Arizona, Cooperative Extension, Turf Irrigation Management Series 3: 1–5
  • Casadesus, J., Mata, M., Marsal, J., Girona, J. (2011). Automated irrigation of apple trees based on measurements of light interception by the canopy. Biosystems Engineering 108: 220–226
  • Deveci, H., Konukcu, F., Altürk, B. (2019). Effect of Climate Change on Wheat Grown Soil Moisture Profile in Thrace District. Journal of Tekirdag Agricultural Faculty 16 (2): 202–218
  • Ergün, A., Ceylan, İ., Aydın, M., Gürel, A.E., Koçbulut, G. (2019). Solarmeter design for high solar radiation measurement and experimental validation. El-CezerîJournal of Science and Engineering 6 (3): 726–735
  • Giacomelli, G.A., Ting, K.C. (1999). Horticultural and engineering considerations for the design of integrated greenhouse plant production systems. Acta Horticulturae 481: 475–481
  • Jensen, M.E., Burman, R.D., Allen, R.G. (1990). Evapotranspiration and Irrigation Water Requirements, ASCE, Reston, USA
  • Jovicich, E., Cantliffe, D.J. (2007). Bell pepper fruit yield and quality as influenced by solar radiation–based irrigation and container media in a passively ventilated greenhouse. HortScience 42 (3): 642–652
  • Kimothi, S., Bhattacharya, B., Semalty, P.D., Pandey, V.K., Dadhwal, V.K. (2004). Estimation of ground insolation using METEOSAT data over India. Current science 86 (9): 1308–1312
  • Koluman, N., Daşkıran, İ., Şener, B. (2013). The Heat Strees Effect on T4 (Thyroxin), T3 (Triiodothyronine), Costisol Hormones of Goats in Rearing Extensive Systems. Journal of Tekirdag Agricultural Faculty 10 (3): 29–136
  • Kökey, İ. (2013). Güneş Enerji Santrallerinin Kurulumunda Güneş Ölçümünün Önemi ve Türkiye’de Yasal Mevzuat. Ölçübilim Kongresi. 26-28 Eylül, P.1-7. Kocaeli, Turkey
  • Lewis, C.D. (1982). Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting, Butterworths Scientific, London
  • Martínez, M.A., Andújar, J.M., Enrique, J.M. (2009). A new and inexpensive pyranometer for the visible spectral range. Sensors 9: 4615–4634
  • Pinto, H.S., Pellegrino, G.Q., Fonsechi, D.B., Coral, G., Caramoni P.H., De Ávila, A.M. (2006). Comparison between Daily Meteorological Data Collected by Automatic and Conventional Stations. 4th International Conference on Experiences with Automatic Weather Stations, 24-26 May, P.1-9. Lisboa, Portugal
  • Rosenberg, N.J., Blad, B.L., Werma, S.B. (1983). Microclimate-The Biological Environment, Wiley, New York
  • Tohsing, K., Phaisathit, D., Pattarapanitchai, S., Masiri, I., Buntoung, S., Aumporn, O., Wattan, R. (2019). A development of a low-cost pyranometer for measuring broadband solar radiation. Journal of Physics: Conference Series 1380: 1–4
  • Wang, K., Dickinson, R.E. (2012). A review of global terrestrial evapotranspiration: observation, modeling, climatology and climatic variability. Reviews of Geophysics 50 (2): 1–54
  • Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., König-Langlo, G. (2013). The global energy balance from a surface perspective. Climate Dynamics 40: 3107–3134
  • Yağcıoğlu, A., Demir, V., Günhan, T. (2004). A computation procedure for estimating the effective transmitted sun radiation into the greenhouse - Part I. Journal of Agriculture Faculty of Ege University 41 (2): 143–154

Creating a Solar Radiation Measuring System (SRMS) Operated by a Programmable Logic Controller (PLC)

Year 2021, Volume: 18 Issue: 4, 675 - 688, 20.12.2021
https://doi.org/10.33462/jotaf.884717

Abstract

Bu çalışmada, kırsal alanlarda kullanılabilecek PLC kontrollü bir SRMS oluşturulması amaçlanmıştır. İlk olarak güç kaynağı, PLC, analog modül ve piranometre birimlerinden oluşan bir SRMS donanımı hazırlanmıştır. Daha sonra verileri ölçmek, kaydetmek ve donanımı PLC ile kontrol etmek amacıyla CODESYS programlama dili kullanılarak bir SRMS yazılımı yazılmıştır. SRMS yazılımı, ilk olarak bir günlük süre boyunca her 30 dakikada bir ölçüm yaparak solar radyasyonu kümülatif olarak toplamış ve günlük toplam solar radyasyonu belirlemiştir. Daha sonra günlük toplam solar radyasyonu ölçüm sayısına bölerek, günlük ortalama solar radyasyonu hesaplamıştır. Günlük toplam ve ortalama solar radyasyon miktarlarını SD karta kaydetmiştir. SRMS, Kahramanmaraş Sütçü İmam Üniversitesi’nde (KSÜ) 2019 yılı Temmuz-Kasım dönemi boyunca test edilmiştir. KSÜ’de kaydedilen günlük ortalama solar radyasyon verileri 10 km uzaklıkta bulunan Doğu Akdeniz Geçit Kuşağı Tarımsal Araştırma Enstitüsünde (DAGTEM) aynı dönemde ölçülen günlük veriler ile karşılaştırılmıştır. KSÜ ve DAGTEM’de ölçülen günlük ortalama solar radyasyon verileri sırasıyla 3.63-33.48 MJ m-2 gün-1 ve 3,00-33,00 MJ m-2 gün-1 arasında değişmiştir. Her iki bölgede ölçülen günlük ortalama solar radyasyon verilerinin beş aylık ortalamaları sırasıyla 20.20 MJ m-2 gün-1 ve 19.64 MJ m-2 gün-1 olarak belirlenmiştir. KSU ve DAGTEM veri gruplarının ortalamaları arasındaki fark istatistiksel olarak önemli bulunmamıştır (p> 0.05). Bu sonuç her iki bölgede ölçülen günlük ortalama solar radyasyon değerlerinin birbirlerinin yerine kullanılabileceğini ortaya koymuştur. Her iki bölgede ölçülen veri grupları arasındaki sapmanın bir ifadesi olarak MAPE ve RMSE sırasıyla %14.57 ve 2.68 MJ m-2 gün-1 olarak belirlenmiştir. Veri gruplarının uyumluluk düzeyi “iyi” olarak elde edilmiştir (MAPE=% 10-20). SRMS’nin günlük ortalama solar radyasyonu yüksek doğrulukla ölçebileceği ve hassas ölçümlerde kullanılabileceği sonucuna ulaşılmıştır.

References

  • Adams, P. (1992). Crop nutrition in hydroponics. Acta Horticulturae 323: 289–305
  • Aksoy, A., Demir, N.F., Öztürk, F.G. (2014). Agricultural Water Use and Sustainability in Turkey. 11th national agricultural economics congress. 3-5 September, P.462-469. Samsun, Turkey
  • Anjos, P.S., Silva, A.S.A., Stošić, B., Stošić, T. (2015). Long-term correlations and cross-correlations in wind speed and solar radiation temporal series from Fernando de Noronha Island, Brazil. Physica A: Statistical Mechanics and its Applications 424: 90–96
  • Anonim (2018a). Detailed information for: PM590 ETH, AX522 and DX561, https://new.abb.com/products, (Accessed date: 03.02.2018)
  • Anonim (2018b). Pyranometers MS-802/402/410/602-instruction manual, https://media. eko-eu.com/assets/media/MS-402_Manual.pdf, (Accessed date: 12.06.2018)
  • Anonim (2018c). Automation Builder V1.2.2 basic software installation, https://new.abb. com/plc/automationbuilder/platform/software, (Accessed date: 03.02.2018)
  • Avallone, E., Mioralli, P.C., Scalon, V.L., Padilha, A., Oliveira, S.D.O. (2018). Thermal pyranometer using the open hardware arduino platform. International Journal of Thermodynamics 21 (1): 1-5
  • Badran, O., Al Salaymeh, A., El Tous, Y., Abdala, W. (2010). Design and testing of an innovative solar radiation measurement device. Energy Conversion and Management 51: 1616–1620
  • Bett, P.E., Thornton, H.E. (2016). The climatological relationships between wind and solar energy supply in Britain. Renewable Energy 87: 96–110
  • Blumthaler, M., Ambach, W., Ellinger, R. (1997). Increase in solar UV radiation with altitude. Journal of Photochemistry and Photobiology B: Biology 39 (2): 130–134
  • Bora, E., Tekeli, M., Etöz, M. (2015). Temporal variations of reference evapotranspiration and measured solar radiation in the Menemen Plain. Journal of AARI 25 (2): 65–76
  • Brown, P., Russel, B. (2001). Siting and maintenance of weather stations. The University of Arizona, Cooperative Extension, Turf Irrigation Management Series 3: 1–5
  • Casadesus, J., Mata, M., Marsal, J., Girona, J. (2011). Automated irrigation of apple trees based on measurements of light interception by the canopy. Biosystems Engineering 108: 220–226
  • Deveci, H., Konukcu, F., Altürk, B. (2019). Effect of Climate Change on Wheat Grown Soil Moisture Profile in Thrace District. Journal of Tekirdag Agricultural Faculty 16 (2): 202–218
  • Ergün, A., Ceylan, İ., Aydın, M., Gürel, A.E., Koçbulut, G. (2019). Solarmeter design for high solar radiation measurement and experimental validation. El-CezerîJournal of Science and Engineering 6 (3): 726–735
  • Giacomelli, G.A., Ting, K.C. (1999). Horticultural and engineering considerations for the design of integrated greenhouse plant production systems. Acta Horticulturae 481: 475–481
  • Jensen, M.E., Burman, R.D., Allen, R.G. (1990). Evapotranspiration and Irrigation Water Requirements, ASCE, Reston, USA
  • Jovicich, E., Cantliffe, D.J. (2007). Bell pepper fruit yield and quality as influenced by solar radiation–based irrigation and container media in a passively ventilated greenhouse. HortScience 42 (3): 642–652
  • Kimothi, S., Bhattacharya, B., Semalty, P.D., Pandey, V.K., Dadhwal, V.K. (2004). Estimation of ground insolation using METEOSAT data over India. Current science 86 (9): 1308–1312
  • Koluman, N., Daşkıran, İ., Şener, B. (2013). The Heat Strees Effect on T4 (Thyroxin), T3 (Triiodothyronine), Costisol Hormones of Goats in Rearing Extensive Systems. Journal of Tekirdag Agricultural Faculty 10 (3): 29–136
  • Kökey, İ. (2013). Güneş Enerji Santrallerinin Kurulumunda Güneş Ölçümünün Önemi ve Türkiye’de Yasal Mevzuat. Ölçübilim Kongresi. 26-28 Eylül, P.1-7. Kocaeli, Turkey
  • Lewis, C.D. (1982). Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting, Butterworths Scientific, London
  • Martínez, M.A., Andújar, J.M., Enrique, J.M. (2009). A new and inexpensive pyranometer for the visible spectral range. Sensors 9: 4615–4634
  • Pinto, H.S., Pellegrino, G.Q., Fonsechi, D.B., Coral, G., Caramoni P.H., De Ávila, A.M. (2006). Comparison between Daily Meteorological Data Collected by Automatic and Conventional Stations. 4th International Conference on Experiences with Automatic Weather Stations, 24-26 May, P.1-9. Lisboa, Portugal
  • Rosenberg, N.J., Blad, B.L., Werma, S.B. (1983). Microclimate-The Biological Environment, Wiley, New York
  • Tohsing, K., Phaisathit, D., Pattarapanitchai, S., Masiri, I., Buntoung, S., Aumporn, O., Wattan, R. (2019). A development of a low-cost pyranometer for measuring broadband solar radiation. Journal of Physics: Conference Series 1380: 1–4
  • Wang, K., Dickinson, R.E. (2012). A review of global terrestrial evapotranspiration: observation, modeling, climatology and climatic variability. Reviews of Geophysics 50 (2): 1–54
  • Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., König-Langlo, G. (2013). The global energy balance from a surface perspective. Climate Dynamics 40: 3107–3134
  • Yağcıoğlu, A., Demir, V., Günhan, T. (2004). A computation procedure for estimating the effective transmitted sun radiation into the greenhouse - Part I. Journal of Agriculture Faculty of Ege University 41 (2): 143–154
There are 29 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Selçuk Usta 0000-0001-8970-7333

Cafer Gençoğlan 0000-0002-4559-4354

Serpil Gençoğlan 0000-0002-7390-8365

Publication Date December 20, 2021
Submission Date February 22, 2021
Acceptance Date March 17, 2021
Published in Issue Year 2021 Volume: 18 Issue: 4

Cite

APA Usta, S., Gençoğlan, C., & Gençoğlan, S. (2021). Creating a Solar Radiation Measuring System (SRMS) Operated by a Programmable Logic Controller (PLC). Tekirdağ Ziraat Fakültesi Dergisi, 18(4), 675-688. https://doi.org/10.33462/jotaf.884717
AMA Usta S, Gençoğlan C, Gençoğlan S. Creating a Solar Radiation Measuring System (SRMS) Operated by a Programmable Logic Controller (PLC). JOTAF. December 2021;18(4):675-688. doi:10.33462/jotaf.884717
Chicago Usta, Selçuk, Cafer Gençoğlan, and Serpil Gençoğlan. “Creating a Solar Radiation Measuring System (SRMS) Operated by a Programmable Logic Controller (PLC)”. Tekirdağ Ziraat Fakültesi Dergisi 18, no. 4 (December 2021): 675-88. https://doi.org/10.33462/jotaf.884717.
EndNote Usta S, Gençoğlan C, Gençoğlan S (December 1, 2021) Creating a Solar Radiation Measuring System (SRMS) Operated by a Programmable Logic Controller (PLC). Tekirdağ Ziraat Fakültesi Dergisi 18 4 675–688.
IEEE S. Usta, C. Gençoğlan, and S. Gençoğlan, “Creating a Solar Radiation Measuring System (SRMS) Operated by a Programmable Logic Controller (PLC)”, JOTAF, vol. 18, no. 4, pp. 675–688, 2021, doi: 10.33462/jotaf.884717.
ISNAD Usta, Selçuk et al. “Creating a Solar Radiation Measuring System (SRMS) Operated by a Programmable Logic Controller (PLC)”. Tekirdağ Ziraat Fakültesi Dergisi 18/4 (December 2021), 675-688. https://doi.org/10.33462/jotaf.884717.
JAMA Usta S, Gençoğlan C, Gençoğlan S. Creating a Solar Radiation Measuring System (SRMS) Operated by a Programmable Logic Controller (PLC). JOTAF. 2021;18:675–688.
MLA Usta, Selçuk et al. “Creating a Solar Radiation Measuring System (SRMS) Operated by a Programmable Logic Controller (PLC)”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 18, no. 4, 2021, pp. 675-88, doi:10.33462/jotaf.884717.
Vancouver Usta S, Gençoğlan C, Gençoğlan S. Creating a Solar Radiation Measuring System (SRMS) Operated by a Programmable Logic Controller (PLC). JOTAF. 2021;18(4):675-88.