Research Article
BibTex RIS Cite

Estimation of Erosion and Sediment using Gavrilović Method in Krueng Jreu Sub-basin, Aceh Province, Indonesia

Year 2023, Volume: 20 Issue: 2, 430 - 440, 22.05.2023
https://doi.org/10.33462/jotaf.1183026

Abstract

Erosion and sediment in a basin can be estimated by calculating and forecasting using various methods. This study aims to assess erosion and sedimentation in the Krueng Jreu sub-basin in the province of Aceh, Indonesia, using the Gavrilović method. This research was carried out by analyzing secondary data for the last ten years, from 2012 to 2021. Data include geology, slope, land use, and river channel networks. The observed parameters include the coefficient of intensity of erosion, temperature coefficient, and sedimentation coefficient, which are used to analyze the erosion volume, spatial sediment rate, and total sediment rate in the Krueng Jreu sub-basin area. The results of calculations using the Gavrilović method show that four main parameters of the biophysical characteristics of the sub-basin, including (1) sensitivity of soil and local geological conditions to erosion, (2) land use, (3) erosion type, and (4) slope of land, have been shown to affect the occurrence of erosion and annual sediment rates. Geological conditions and land use provide a high level of sensitivity to the results of the coefficient of intensity of erosion. Temperature and rainfall are directly proportional to the annual erosion volume and the spatial sediment rate. The lowest yearly erosion volume and spatial sediment rate in 2019 were 64965.41 m3km-2year-1 and 58206.18 m3km-2year-1. Meanwhile, the highest annual erosion volume and spatial sediment rate will occur in 2021, 101500.71 m3km-2year-1 and 90940.21 m3km-2year-1. Fluctuations in the annual volume of erosion are caused by rainfall, affecting the spatial sediment rate and the total sediment rate.

References

  • Ali, S., Al-Umary, F. A., Salar, S. G., Al-Ansari, N. and Knutsson, S. (2016). GIS based soil erosion estimation using EPM method, Garmiyan Area, Kurdistan Region, Iraq. Journal of Civil Engineering and Architecture, 10: 291-308.
  • Amiri, F. (2010). Estimate of erosion and sedimentation in semi-arid basin using empirical models of erosion potential within a geographic information system. Air, Soil and Water Research, 3: S3427.
  • Asselman, N. E., Middelkoop, H. and Van Dijk, P. M. (2003). The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the River Rhine. Hydrological Processes, 17(16): 3225-3244.
  • Auddino, M., Dominici, R. and Viscomi, A. (2015). Evaluation of yield sediment in the Sfalassà Fiumara (southwestern, Calabria) by using Gavrilovic method in GIS environment. Rendiconti Online della Società Geologica Italiana, 33: 3-7.
  • Dalaris, M., Psilovikos, A., Sapountzis, M. and Mourtzios, P. (2013). Water erosion assessment in Skiathos Island using the Gavrilović method. Fresenius Environmental Bulletin, 22(10): 2943-2952.
  • Devianti, D. (2016). Pola Perubahan Penggunaan Lahan Sub Sub Daerah Aliran Sungai (DAS) Cikujang. Rona Teknik Pertanian, 9(2): 147-156.
  • Devianti, D., Fachruddin, Purwati, E., Thamren, D. S. and Sitorus, A. (2021). Application of Geographic Information Systems and Sediment Routing Methods in Sediment Mapping in Krueng Jreu Sub-Watershed, Aceh Province, Indonesia. International Journal of Sustainable Development and Planning, 16(7): 1253-1261.
  • Dragičević, N., Karleuša, B. and Ožanić, N. (2018). Improvement of drainage density parameter estimation within erosion potential method. Multidisciplinary Digital Publishing Institute Proceedings, 2(11): 1-8.
  • Dunkerley, D. L. (2019). Rainfall intensity bursts and the erosion of soils: an analysis highlighting the need for high temporal resolution rainfall data for research under current and future climates. Earth Surface Dynamics, 7(2): 345-360.
  • El Badaoui, K., Algouti, A., Algouti, A. and Adaze, E. (2021). Erosion Potential Method (Gavrilović Method): Methodological improvements and application in Toudgha River catchment, southeast of Morocco. Journal International Sciences et Technique de l’Eau et de l’Environnement, 6(1): 114-123.
  • Ghimire, S. K., Higaki, D. and Bhattarai, T. P. (2013). Estimation of Soil Erosion Rates and Eroded Sediment in a Degraded Catchment of the Siwalik Hills, Nepal. Land, 2(3): 370-391.
  • Ghozali, I. (2016). Aplikasi Analisis Multivariete IBM SPSS 23, Badan Penerbit Universitas Diponegoro, Semarang. 2016. aplikasi analisis multivariate dengan program ibm spss, 23.
  • Hanafi, F. and Pamungkas, D. (2021). Aplikasi Model Rusle untuk Estimasi Kehilangan Tanah Bagian Hulu di Sub Das Garang, Jawa Tengah. Jurnal Geografi: Media Informasi Pengembangan dan Profesi Kegeografian, 18(1): 30-36.
  • Ikhsan, M., Safriani, M., Silvia, C. S. and Dari, R. (2021). Prediction of Land Erosion Events in the Down Stream Kreung Meureubo Watershed West Aceh District. International Journal of Engineering, Science and Information Technology, 1(4): 70-76.
  • Jakubínský, J., Pechanec, V., Procházka, J. and Cudlín, P. (2019). Modelling of soil erosion and accumulation in an agricultural landscape—A comparison of selected approaches applied at the small stream basin level in the Czech Republic. Water, 11(3): 404.
  • Kinnell, P. I. A. (2017). A comparison of the abilities of the USLE-M, RUSLE2 and WEPP to model event erosion from bare fallow areas. Science of The Total Environment, 596-597: 32-42.
  • Kironoto, B. A., Yulistiyanto, B. and Olii, M. R. (2021). Erosi dan Konservasi Lahan: UGM PRESS.
  • Kouli, M., Soupios, P. and Vallianatos, F. (2009). Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental geology, 57(3): 483-497.
  • Lihawa, F. (2017). Daerah Aliran Sungai Alo Erosi, Sedimentasi dan Longsoran: Deepublish.
  • Marques, M. J., Bienes, R., Jiménez, L. and Pérez-Rodríguez, R. (2007). Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots. Science of The Total Environment, 378(1): 161-165.
  • McDonald, M., Healey, J. and Stevens, P. (2002). The effects of secondary forest clearance and subsequent land-use on erosion losses and soil properties in the Blue Mountains of Jamaica. Agriculture, Ecosystems & Environment, 92(1): 1-19.
  • Meliho, M., Nouira, A., Benmansour, M., Boulmane, M., Khattabi, A., Mhammdi, N. and Benkdad, A. (2019). Assessment of soil erosion rates in a Mediterranean cultivated and uncultivated soils using fallout 137Cs. Journal of environmental radioactivity, 208: 106021.
  • Muntazar, Joni and Ramli, I. (2021). Erosion and Sedimentation Analysis Due to Land Use Changes in The Krueng Pase Watershed. IOP Conference Series: Earth and Environmental Science. 21 September, Banda Aceh, Indonesia.
  • Sakuno, N. R. R., Guiçardi, A. C. F., Spalevic, V., Avanzi, J. C., Silva, M. L. N. and Mincato, R. L. (2020). Adaptation and application of the erosion potential method for tropical soils. Revista Ciência Agronômica, 51(1): 1-10.
  • Sari, H. (2022). Identification of Erosion Sites With an Unmanned Aerial Vehicle (Drone): The Case of Thrace Peninsula. Journal of Tekirdag Agricultural Faculty, 19(2): 70-79.
  • Sattari, M. T., Mirabbasi, R., Dolati, H., Sureh, F. S. and Ahmad, S. (2020). Investigating the effect of managing scenarios of flow reduction and increasing irrigation water demand on water resources allocation using system dynamics (case study: Zonouz dam, Iran). Journal of Tekirdag Agricultural Faculty, 17(3): 406-421.
  • Solaimani, K., Modallaldoust, S. and Lotfi, S. (2009). Investigation of land use changes on soil erosion process using geographical information system. International Journal of Environmental Science & Technology, 6(3): 415-424.
  • Sudrajat, U. (2018). Suwaji. Ekonomi Manajerial. Yogyakarta: Deepublish.
  • Sun, W., Shao, Q., Liu, J. and Zhai, J. (2014). Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena, 121: 151-163.
  • Terranova, O., Antronico, L., Coscarelli, R. and Iaquinta, P. (2009). Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: an application model for Calabria (southern Italy). Geomorphology, 112(3-4): 228-245.
  • Toure, A. A., Rajot, J. L., Garba, Z., Marticorena, B., Petit, C. and Sebag, D. (2011). Impact of very low crop residues cover on wind erosion in the Sahel. Catena, 85(3): 205-214.

Estimation of Erosion and Sediment using Gavrilović Method in Krueng Jreu Sub-basin, Aceh Province, Indonesia

Year 2023, Volume: 20 Issue: 2, 430 - 440, 22.05.2023
https://doi.org/10.33462/jotaf.1183026

Abstract

Erosion and sediment in a basin can be estimated by calculating and forecasting using various methods. This study aims to assess erosion and sedimentation in the Krueng Jreu sub-basin in the province of Aceh, Indonesia, using the Gavrilović method. This research was carried out by analyzing secondary data for the last ten years, from 2012 to 2021. Data include geology, slope, land use, and river channel networks. The observed parameters include the coefficient of intensity of erosion, temperature coefficient, and sedimentation coefficient, which are used to analyze the erosion volume, spatial sediment rate, and total sediment rate in the Krueng Jreu sub-basin area. The results of calculations using the Gavrilović method show that four main parameters of the biophysical characteristics of the sub-basin, including (1) sensitivity of soil and local geological conditions to erosion, (2) land use, (3) erosion type, and (4) slope of land, have been shown to affect the occurrence of erosion and annual sediment rates. Geological conditions and land use provide a high level of sensitivity to the results of the coefficient of intensity of erosion. Temperature and rainfall are directly proportional to the annual erosion volume and the spatial sediment rate. The lowest yearly erosion volume and spatial sediment rate in 2019 were 64965.41 m3km-2year-1 and 58206.18 m3km-2year-1. Meanwhile, the highest annual erosion volume and spatial sediment rate will occur in 2021, 101500.71 m3km-2year-1 and 90940.21 m3km-2year-1. Fluctuations in the annual volume of erosion are caused by rainfall, affecting the spatial sediment rate and the total sediment rate.

References

  • Ali, S., Al-Umary, F. A., Salar, S. G., Al-Ansari, N. and Knutsson, S. (2016). GIS based soil erosion estimation using EPM method, Garmiyan Area, Kurdistan Region, Iraq. Journal of Civil Engineering and Architecture, 10: 291-308.
  • Amiri, F. (2010). Estimate of erosion and sedimentation in semi-arid basin using empirical models of erosion potential within a geographic information system. Air, Soil and Water Research, 3: S3427.
  • Asselman, N. E., Middelkoop, H. and Van Dijk, P. M. (2003). The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the River Rhine. Hydrological Processes, 17(16): 3225-3244.
  • Auddino, M., Dominici, R. and Viscomi, A. (2015). Evaluation of yield sediment in the Sfalassà Fiumara (southwestern, Calabria) by using Gavrilovic method in GIS environment. Rendiconti Online della Società Geologica Italiana, 33: 3-7.
  • Dalaris, M., Psilovikos, A., Sapountzis, M. and Mourtzios, P. (2013). Water erosion assessment in Skiathos Island using the Gavrilović method. Fresenius Environmental Bulletin, 22(10): 2943-2952.
  • Devianti, D. (2016). Pola Perubahan Penggunaan Lahan Sub Sub Daerah Aliran Sungai (DAS) Cikujang. Rona Teknik Pertanian, 9(2): 147-156.
  • Devianti, D., Fachruddin, Purwati, E., Thamren, D. S. and Sitorus, A. (2021). Application of Geographic Information Systems and Sediment Routing Methods in Sediment Mapping in Krueng Jreu Sub-Watershed, Aceh Province, Indonesia. International Journal of Sustainable Development and Planning, 16(7): 1253-1261.
  • Dragičević, N., Karleuša, B. and Ožanić, N. (2018). Improvement of drainage density parameter estimation within erosion potential method. Multidisciplinary Digital Publishing Institute Proceedings, 2(11): 1-8.
  • Dunkerley, D. L. (2019). Rainfall intensity bursts and the erosion of soils: an analysis highlighting the need for high temporal resolution rainfall data for research under current and future climates. Earth Surface Dynamics, 7(2): 345-360.
  • El Badaoui, K., Algouti, A., Algouti, A. and Adaze, E. (2021). Erosion Potential Method (Gavrilović Method): Methodological improvements and application in Toudgha River catchment, southeast of Morocco. Journal International Sciences et Technique de l’Eau et de l’Environnement, 6(1): 114-123.
  • Ghimire, S. K., Higaki, D. and Bhattarai, T. P. (2013). Estimation of Soil Erosion Rates and Eroded Sediment in a Degraded Catchment of the Siwalik Hills, Nepal. Land, 2(3): 370-391.
  • Ghozali, I. (2016). Aplikasi Analisis Multivariete IBM SPSS 23, Badan Penerbit Universitas Diponegoro, Semarang. 2016. aplikasi analisis multivariate dengan program ibm spss, 23.
  • Hanafi, F. and Pamungkas, D. (2021). Aplikasi Model Rusle untuk Estimasi Kehilangan Tanah Bagian Hulu di Sub Das Garang, Jawa Tengah. Jurnal Geografi: Media Informasi Pengembangan dan Profesi Kegeografian, 18(1): 30-36.
  • Ikhsan, M., Safriani, M., Silvia, C. S. and Dari, R. (2021). Prediction of Land Erosion Events in the Down Stream Kreung Meureubo Watershed West Aceh District. International Journal of Engineering, Science and Information Technology, 1(4): 70-76.
  • Jakubínský, J., Pechanec, V., Procházka, J. and Cudlín, P. (2019). Modelling of soil erosion and accumulation in an agricultural landscape—A comparison of selected approaches applied at the small stream basin level in the Czech Republic. Water, 11(3): 404.
  • Kinnell, P. I. A. (2017). A comparison of the abilities of the USLE-M, RUSLE2 and WEPP to model event erosion from bare fallow areas. Science of The Total Environment, 596-597: 32-42.
  • Kironoto, B. A., Yulistiyanto, B. and Olii, M. R. (2021). Erosi dan Konservasi Lahan: UGM PRESS.
  • Kouli, M., Soupios, P. and Vallianatos, F. (2009). Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental geology, 57(3): 483-497.
  • Lihawa, F. (2017). Daerah Aliran Sungai Alo Erosi, Sedimentasi dan Longsoran: Deepublish.
  • Marques, M. J., Bienes, R., Jiménez, L. and Pérez-Rodríguez, R. (2007). Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots. Science of The Total Environment, 378(1): 161-165.
  • McDonald, M., Healey, J. and Stevens, P. (2002). The effects of secondary forest clearance and subsequent land-use on erosion losses and soil properties in the Blue Mountains of Jamaica. Agriculture, Ecosystems & Environment, 92(1): 1-19.
  • Meliho, M., Nouira, A., Benmansour, M., Boulmane, M., Khattabi, A., Mhammdi, N. and Benkdad, A. (2019). Assessment of soil erosion rates in a Mediterranean cultivated and uncultivated soils using fallout 137Cs. Journal of environmental radioactivity, 208: 106021.
  • Muntazar, Joni and Ramli, I. (2021). Erosion and Sedimentation Analysis Due to Land Use Changes in The Krueng Pase Watershed. IOP Conference Series: Earth and Environmental Science. 21 September, Banda Aceh, Indonesia.
  • Sakuno, N. R. R., Guiçardi, A. C. F., Spalevic, V., Avanzi, J. C., Silva, M. L. N. and Mincato, R. L. (2020). Adaptation and application of the erosion potential method for tropical soils. Revista Ciência Agronômica, 51(1): 1-10.
  • Sari, H. (2022). Identification of Erosion Sites With an Unmanned Aerial Vehicle (Drone): The Case of Thrace Peninsula. Journal of Tekirdag Agricultural Faculty, 19(2): 70-79.
  • Sattari, M. T., Mirabbasi, R., Dolati, H., Sureh, F. S. and Ahmad, S. (2020). Investigating the effect of managing scenarios of flow reduction and increasing irrigation water demand on water resources allocation using system dynamics (case study: Zonouz dam, Iran). Journal of Tekirdag Agricultural Faculty, 17(3): 406-421.
  • Solaimani, K., Modallaldoust, S. and Lotfi, S. (2009). Investigation of land use changes on soil erosion process using geographical information system. International Journal of Environmental Science & Technology, 6(3): 415-424.
  • Sudrajat, U. (2018). Suwaji. Ekonomi Manajerial. Yogyakarta: Deepublish.
  • Sun, W., Shao, Q., Liu, J. and Zhai, J. (2014). Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena, 121: 151-163.
  • Terranova, O., Antronico, L., Coscarelli, R. and Iaquinta, P. (2009). Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: an application model for Calabria (southern Italy). Geomorphology, 112(3-4): 228-245.
  • Toure, A. A., Rajot, J. L., Garba, Z., Marticorena, B., Petit, C. and Sebag, D. (2011). Impact of very low crop residues cover on wind erosion in the Sahel. Catena, 85(3): 205-214.
There are 31 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Devianti Devianti 0000-0001-9153-1875

Ichwana Ramlı This is me 0000-0003-3169-8328

Intan Aryanı This is me 0000-0002-6535-9618

Purwana Satrıo This is me 0000-0002-7712-7881

Dewi Sartika Thamren2 This is me 0000-0002-1734-1990

Early Pub Date May 8, 2023
Publication Date May 22, 2023
Submission Date October 1, 2022
Acceptance Date January 18, 2023
Published in Issue Year 2023 Volume: 20 Issue: 2

Cite

APA Devianti, D., Ramlı, I., Aryanı, I., Satrıo, P., et al. (2023). Estimation of Erosion and Sediment using Gavrilović Method in Krueng Jreu Sub-basin, Aceh Province, Indonesia. Tekirdağ Ziraat Fakültesi Dergisi, 20(2), 430-440. https://doi.org/10.33462/jotaf.1183026
AMA Devianti D, Ramlı I, Aryanı I, Satrıo P, Sartika Thamren2 D. Estimation of Erosion and Sediment using Gavrilović Method in Krueng Jreu Sub-basin, Aceh Province, Indonesia. JOTAF. May 2023;20(2):430-440. doi:10.33462/jotaf.1183026
Chicago Devianti, Devianti, Ichwana Ramlı, Intan Aryanı, Purwana Satrıo, and Dewi Sartika Thamren2. “Estimation of Erosion and Sediment Using Gavrilović Method in Krueng Jreu Sub-Basin, Aceh Province, Indonesia”. Tekirdağ Ziraat Fakültesi Dergisi 20, no. 2 (May 2023): 430-40. https://doi.org/10.33462/jotaf.1183026.
EndNote Devianti D, Ramlı I, Aryanı I, Satrıo P, Sartika Thamren2 D (May 1, 2023) Estimation of Erosion and Sediment using Gavrilović Method in Krueng Jreu Sub-basin, Aceh Province, Indonesia. Tekirdağ Ziraat Fakültesi Dergisi 20 2 430–440.
IEEE D. Devianti, I. Ramlı, I. Aryanı, P. Satrıo, and D. Sartika Thamren2, “Estimation of Erosion and Sediment using Gavrilović Method in Krueng Jreu Sub-basin, Aceh Province, Indonesia”, JOTAF, vol. 20, no. 2, pp. 430–440, 2023, doi: 10.33462/jotaf.1183026.
ISNAD Devianti, Devianti et al. “Estimation of Erosion and Sediment Using Gavrilović Method in Krueng Jreu Sub-Basin, Aceh Province, Indonesia”. Tekirdağ Ziraat Fakültesi Dergisi 20/2 (May 2023), 430-440. https://doi.org/10.33462/jotaf.1183026.
JAMA Devianti D, Ramlı I, Aryanı I, Satrıo P, Sartika Thamren2 D. Estimation of Erosion and Sediment using Gavrilović Method in Krueng Jreu Sub-basin, Aceh Province, Indonesia. JOTAF. 2023;20:430–440.
MLA Devianti, Devianti et al. “Estimation of Erosion and Sediment Using Gavrilović Method in Krueng Jreu Sub-Basin, Aceh Province, Indonesia”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 20, no. 2, 2023, pp. 430-4, doi:10.33462/jotaf.1183026.
Vancouver Devianti D, Ramlı I, Aryanı I, Satrıo P, Sartika Thamren2 D. Estimation of Erosion and Sediment using Gavrilović Method in Krueng Jreu Sub-basin, Aceh Province, Indonesia. JOTAF. 2023;20(2):430-4.