Research Article
BibTex RIS Cite

FeSO4.7H2O, İndol-3-Bütirik Asit ve Farklı Besin Ortamlarının In Vitro Ceviz (Juglans Regia L.) Fidanı Çoğaltımı ve Mikroaşılma Üzerine Etkisi

Year 2024, Volume: 21 Issue: 3, 748 - 758, 27.05.2024
https://doi.org/10.33462/jotaf.1368566

Abstract

Dünya genelinde Düzenli beslenme alışkanlığında önemli bir yere sahip olan ceviz, fonksiyonel gıda olarak tanımlanmaktadır. Ceviz bitkisinin adaptasyon kabiliyetinin yüksek olması, kaliteli yağ ve protein içerdiğinden besin değerinin yüksek olması, sanayide kullanımı ve bunlara bağlı ekonomik getirisi nedeniyle üzerinde durulması gereken bir tür konumundadır. Ceviz bitkisinde anaç ve fidan yetiştiriciliği Dünya'da önemli tarım faaliyetlerinden biri sayılır. Ancak çelik köklendirme ve fidanların büyüme süresinin uzun ve zor olması, yüksek verimli klonal üretim tesislerinin kurulmasına bir engeldir. Özellikle sağlıklı ve kaliteli ceviz fidanı üretim süreci diğer odunsu bitkilere göre daha karmaşık ve zaman alıcıdır. Bu araştırmada biyoteknolojik teknikler kullanılarak kısa zamanda kaliteli fidanların yetiştirilmesi amaçlanmıştır. Denemelerde genel olarak in vitro mikroçoğaltım tekniklerinde kullanılan besiyeri üzerine modifikasyonlar yapılmıştır ve bu modifiye besi yerlerinin, in vitro şartlarında yetişen sürgünlerin köklendirmesi ve in vitro mikroaşılama üzerindeki etkileri değerlendirilmiştir. Çalışmanın sonucuna bakıldığında ortalama sürgün (2.93±0.90) oluşumu için en uygun ortam 4 numaralı (5.4 µM NAA + 6.9 µM TDZ + 0.6 µM GA3 içeren Murashige ve Skoog) besin ortamından elde edilmiştir. Sürgün köklendirmeye yönelik denemelerde 14.7 ve 19.6 µM IBA ve 348.42 µM FeSO4. 7H2O içeren MS besin ortamından 10.33 ve 6 köklü (2.5cm kök uzunluğu) sürgünler elde edilmiştir. Mikroaşılama çalışmalarında 19.6 µM IBA ve 348.42 µM FeSO4.7H2O içeren MS ortamında iki mikro aşılanmış fide elde edilmiştir. Elde edilen 6 fidan 3 ay tam kontrollü yetiştirme odasında alıştırma süresini atlattıktan sonra bahçeye transfer edilmiştir. Çalışma sonucunda besi yerine uygulanan FeSO4.7H2O ve yüksek doz IBA in vitro köklenme ve in vitro mikroaşılı fidan elde etmede etkili olduğu gözlemlenmiştir. Çalışmanın sonuçları diğer odunsu bitkilerde yapılan klonal çoğaltım çalışmalara yardımcı olacaktır.

References

  • Ahuja, M. R. (2013). Micropropagation of woody plants (Vol. 41). Springer Science Business Media, Netherlands.
  • Al-Mizory, L. S. M. and Mayi, A. A. (2012). In vitro propagation of walnut (Juglans Regia) by nodal explants. Journal of Agricultural Science and Technology, 2: 665-670.
  • Camas, R. U. S., Rivera-Solís, G., Duarte-Aké, F. and De-la-Peña, C. (2014). In vitro culture: an epigenetic challenge for plants. Plant Cell Tissue Organ Culture, 118: 187-201. https://10.1007/s11240-014-0482-8
  • Chandra, S., Bandopadhyay, R., Kumar, V. and Chandra, R. (2010). Acclimatization of tissue cultured plantlets. from laboratory to land. Biotechnology Letters, 32: 1199-1205.
  • Daneshvar, R. (2019). Efficient approaches to in vitro multiplication of Lilium candidum L. with consistent and safe access throughout year and acclimatization of plant under hot-summer Mediterranean (Csa Type) climate. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47: 734-742.
  • Deb. C. R. and Imchen, T. (2010). An efficient in vitro hardening technique of tissue culture raised plants. Biotechnology, 9: 79-83.
  • Dong, P., Lichai, Y., Qingming, W. and Ruisheng, G. (2007). Factors affecting rooting of in vitro shoots of walnut cultivars. The Journal of Horticultural Science and Biotechnology, 82: 223-226.
  • Driver, J. A. and Kuniyuki, A. H. (1984). In vitro propagation of Paradox walnut rootstock. Horticultural Science, 19: 507-509.
  • Estrada-Luna, A. A., López-Peralta, C. and Cárdenas-Soriano, E. (2002). In vitro micrografting and the histology of graft union formation of selected species of prickly pear cactus (Opuntia Spp.). Scientia Horticulturae, 92: 317-327.
  • Fidancı, A. (2005). Şebin ve K2 ceviz çeşitlerin in vitro’da hızlı çoğaltılma tekniklerinin belirlenmesi. Bahçe, 34: 239-245.
  • Gotea, R., Gotea, I., Radu, E. S. and Vahdat, K. (2012). In vitro propagation of several walnut cultivars. Bull UASVM Horticulture, 69: 167-171.
  • Jain, S. M. and Ishii, K. (Eds.) (2012). Micropropagation of woody trees and fruits (Vol. 75). Springer Science Business Media, Netherlands.
  • Jay-Allemand, C., Capelli, P. and Cornu, D. (1992). Root development of in vitro hybrid walnut microcuttings in a vermiculite-containing gelrite medium. Scientia Horticulturae, 51 (3-4): 335-342.
  • Kefayeti, S., Kafkas, E. and Ercisli, S. (2019). Micropropagation of ‘Chester thornless’ blackberry cultivar using axillary bud explants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1): 162-168.
  • Kepenek, K. and Kolağasi, Z. (2016). Micropropagation of walnut (Juglans regia L.). Acta Physica Polonica A., 130(1): 150-156.
  • Khawar, K. M. and Özcan, S. (2002) High frequency shoot regeneration from cotyledonary node explants of different lentil (Lens culinaris Medik) genotypes and in vitro micrografting. Biotechnology & Biotechnological Equipment, 16: 12-17.
  • Koufan, M., Mazri, M. A., Essatte, A., Moussafir, S., Belkoura, I., El Rhaffari, L. and Toufik, I. (2020). A novel regeneration system through micrografting for Argania Spinosa (L.) skeels and confirmation of successful rootstock-scion union by histological analysis. Plant Cell Tissue Organ Culture, 142(2): 369-378.
  • Land, S. B. and Cunningham, M. (1994) Rooted Cutting Macropropagation of Hardwoods, In Foster G, Diner AM, eds, Applications of Vegetative Propagation in Forestry, Proc of The Southern Regional Information Exchange Group Biennial Symposium On Forest Genetics, Southern Forest Experiment Station New Orleans, Louisiana pp. 75-96.
  • Licea-Moreno, R. J., Contreras, A., Morales, A. V., Urban, I., Daquinta, M. and Gomez, L. (2015). Improved walnut mass micropropagation through the combined use of phloroglucinol and FeEDDHA. Plant Cell Tissue Organ Culture, 123(1): 143-154.
  • Martinez. L. M., Labuckas, D. O., Lamarque, A. L. and Maestri, D. M. (2010). Walnut (Juglans regia L.): Genetic Resources, Chemistry, By-Products. Journal of the Science of Food and Agriculture, 90: 1959-1967.
  • McClelland, M. T., Smith, M. A. L. and Carothers, Z. B. (1990). The effects of in vitro and ex vitro root initiation on subsequent microcutting root quality in three woody plants. Plant Cell Tissue Organ Culture, 23: 115-123.
  • Mcgranahan, G., Leslie, C. A. and Driver, J. A. (1988). In vitro propagation of mature Persian walnut cultivars. Horticulture Science, 23: 220.
  • Mitrofanova, I., Ivanova, N., Kuzmina, T., Mitrofanova, O. and Zubkova, N. (2021). In vitro regeneration of clematis plants in the nikita botanical garden via somatic embryogenesis and organogenesis. Frontiers in Plant Science, 12: 1-18.
  • Mneney, E. E. and Mantell, S. H. (2001). In vitro micrografting of cashew. Plant Cell, Tissue Organ Culture, 66: 49-58.
  • Murashige, T., Bitters, W. P., Rangan, T. S., Nauer, E. M., Roistachek, C. N. and Holliday, P. B. (1972). A technique of shoot apex grafting and its utilization towards recovering virus-free citrus clones. Horticulture Science, 7: 118-119.
  • Onay, A. (2000) Micropropagation of pistachio from mature trees. Plant Cell Tissue Organ Culture, 60: 159-163.
  • Paunović, S. M., Miletić, R., Janković, D., Janković, S. and Mitrović, M. (2013). Effect of humisol on survival and growth of nursery grafted walnut (Juglans regia L.) plants. Horticultural Science, 40: 111-118.
  • Pehlivan, E. C., Kunter, B. and Royandazagh, S. (2017) Choice of explant material and media for in vitro callus regeneration in Sultana grape cultivar (Vitis vinifera L.). Journal of Tekirdag Agricultural Faculty, Spec Issue: 30-34.
  • Rathore, J. S., Rathore, V., Shekhawat, N. S., Singh, R. P., Liler, G., Phulwaria, M. and Dagla, H. R. (2004). Plant Biotechnology and Molecular Markers, In A Narula, S Srivastava, eds, Micropropagation of Woody Plants, Anamaya Publishers, New Delhi, India, pp 195-205.
  • Ribeiro, H., Ribeiro, A., Pires, R., Cruz, J., Cardoso, H., Barroso, J. M. and Peixe, A. (2022). Ex vitro rooting and simultaneous micrografting of the walnut hybrid rootstock ‘Paradox’ (Juglans hindsi× Juglans regia) cl.‘Vlach’. Agronomy, 12: 595.
  • Ribeiro, L. M., Nery, L. A., Vieira, L. M. and Mercadante-Simões, M. O. (2015). Histological study of micrografting in passion fruit. Plant Cell Tissue Organ Culture, 123: 173-181.
  • Rodriguez, R. (1982a). Callus initiation and root formation from in vitro culture of walnut cotyledons. Horticultural Science, 17: 195-196.
  • Rodriguez, R. (1982b). Stimulation of multiple shoot-bud in walnut seeds. Horticultural Science, 17: 92.
  • Rodriguez, R. and Sanchez-Tames, R. (1981). Cultivo detejitos y differentiation en nogal. Revista de la Facultad de Ciencias Universidad de Oviedo Ser Biologia, 22: 21-28.
  • Royandazagh, D. S. (2019). Potential of flow cytometry in sex determination and in vitro micropropagation of Laurus nobilis L. Applied Ecology and Environmental Research, 17: 5953-5964.
  • Royandazagh, S. D. and Pehlivan, E. C. (2016). In vitro Micropropagation of Lilium candidum L. and alkaloids. Journal of Tekirdag Agricultural Faculty, 13(3): 100-110.
  • Saadat, Y. A. and Hennerty, M. J. (2002). Factors affecting the shoot multiplication of Persian walnut (Juglans regia L.). Scientia Horticulturae, 95: 251-260.
  • Sammona, O. S., Abde Elhamid, N. A. and Samaan, M. S. F. (2018). Effect of some factors on the micropropagation and micrografting of some grape rootstocks in vitro. Arab Universities Journal of Agricultural Sciences, 26: 133-146.
  • Scaltsoyiannes, A., Tsoulpha, P., Panetsos, K. P. and Moulalis, D. (1997). Effect of genotype on micropropagation of walnut trees (Juglans regia). Silvae Genetica, 46: 326-332.
  • Sekmen, Ș., Sesli, Y. and Sarısu, H.C. (2017). Establishing in vitro Propagation Protocol for Chandler Walnut Cultivar. Bahçe, 46: 169-174.
  • Sotiropoulos, T. E., Almaliotis, D., Papadakis, I., Dimassi, K. N. and Therios, I. N. (2006) Effects of different iron sources and concentrations on in vitro multiplication, rooting and nutritional status of the pear rootstock 'OHF 333'. European Journal of Horticultural Science, 71 (5): 222-226.
  • Trejgell, A., Libront, I. and Tretyn, A. (2012). The effect of Fe-EDDHA on shoot multiplication and in vitro rooting of Carlina onopordifolia Besser. Acta Physiologiae Plantarum, 34: 2051-2055.
  • Tsutsui, H. and Notaguchi, M. (2017). The use of grafting to study systemic signaling in plants. Plant and Cell Physiology, 58: 1291-1301.
  • Tuan, P. E., Meier-Dinkel, A., Holtken, A. M., Wenzlitschke, I. and Winkelmann, T. (2016). Paving the way for large-scale micropropagation of juglans × intermedia using genetically identified hybrid seed. Plant Cell Tissue Organ Culture, 126: 153-166.
  • Xiaoying, M., Yufei, H. and Guogang, C. (2014). Amino acid composition, molecular weight distribution and gel electrophoresis of walnut (Juglans regia L.) proteins and protein fractionations. International Journal of Molecular Sciences, 15:2003-2014.
  • Yulan, F., Feng, G. and Wie, W. (2003). Sterilization of Carya illinoensis explants in tissue culture. Journal of Anhui Agricultural University, 31: 169-172.
  • Zarghami, R. and Salari, A. (2015). Effect of different hormonal treatments on proliferation and rooting of three persian walnut (Juglans regia L.) genotypes. Pakistan Journal of Biological Sciences, 18: 260-266.
  • Zawadzka, M. and Orlikowska, T. (2009). Influence of FeEDDHA on in vitro rooting and acclimatization of red raspberry (Rubus idaeus L.) in peat and vermiculite. The Journal of Horticultural Science and Biotechnology, 84: 599-603.

Influence of FeSO4.7H2O, Indole-3-Butyric Acid and Different Nutrient Medium on In Vitro Sapling Propagation and Micrografting of Walnut (Juglans Regia L.)

Year 2024, Volume: 21 Issue: 3, 748 - 758, 27.05.2024
https://doi.org/10.33462/jotaf.1368566

Abstract

Walnuts are considered a functional food and play a significant role worldwide in people's regular diets. The cultivation and trade of walnut rootstocks and saplings are crucial agricultural activities globally and in Türkiye. Rootstocks are used for grafting and propagating different walnut varieties, and they are essential for tree development, fruit yield, product quantity, and most importantly, their ability to adapt to various ecological conditions and resist diseases and pests. Fruit growing and production of fruit rootstocks of deep-rooted plants in horticulture is given high importance in many countries. However, poor rooting and slow-growing sapling prevent establishing high-yield clonal production. Especially walnut sapling propagation is more complicated and time-consuming than other woody plants. Our research aims to grow high-quality saplings by using biotechnological techniques. This study used modifications to the current in vitro basal medium and evaluated the effects on in vitro rooting and micrografting of walnut species. The optimal medium for shoots induction (2.93±0.90) of the plant was determined as 4 number medium (Murashige and Skoog (MS) nutrient medium with 5.4 µM NAA + 6.9 µM TDZ + 0.6 µM GA3 and solidified with 0.7% agar). In trials to develop sapling, the 10.33 and 6 rooted (2.5cm root length) shoots were obtained from MS nutrient medium with 14.7 and 19.6 µM of IBA and 348.42 µM of FeSO4. 7H2O, and two micrografted plants in MS medium with 19.6 µM of IBA and 348.42 µM of FeSO4.7H2O survived. After three months in the growth chamber, six saplings were ready for transfer to the field. Our findings suggested that FeSO4.7H2O and high dose IBA treatment in MS medium is efficient for in vitro rooting and obtaining in vitro micrografted saplings.

References

  • Ahuja, M. R. (2013). Micropropagation of woody plants (Vol. 41). Springer Science Business Media, Netherlands.
  • Al-Mizory, L. S. M. and Mayi, A. A. (2012). In vitro propagation of walnut (Juglans Regia) by nodal explants. Journal of Agricultural Science and Technology, 2: 665-670.
  • Camas, R. U. S., Rivera-Solís, G., Duarte-Aké, F. and De-la-Peña, C. (2014). In vitro culture: an epigenetic challenge for plants. Plant Cell Tissue Organ Culture, 118: 187-201. https://10.1007/s11240-014-0482-8
  • Chandra, S., Bandopadhyay, R., Kumar, V. and Chandra, R. (2010). Acclimatization of tissue cultured plantlets. from laboratory to land. Biotechnology Letters, 32: 1199-1205.
  • Daneshvar, R. (2019). Efficient approaches to in vitro multiplication of Lilium candidum L. with consistent and safe access throughout year and acclimatization of plant under hot-summer Mediterranean (Csa Type) climate. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47: 734-742.
  • Deb. C. R. and Imchen, T. (2010). An efficient in vitro hardening technique of tissue culture raised plants. Biotechnology, 9: 79-83.
  • Dong, P., Lichai, Y., Qingming, W. and Ruisheng, G. (2007). Factors affecting rooting of in vitro shoots of walnut cultivars. The Journal of Horticultural Science and Biotechnology, 82: 223-226.
  • Driver, J. A. and Kuniyuki, A. H. (1984). In vitro propagation of Paradox walnut rootstock. Horticultural Science, 19: 507-509.
  • Estrada-Luna, A. A., López-Peralta, C. and Cárdenas-Soriano, E. (2002). In vitro micrografting and the histology of graft union formation of selected species of prickly pear cactus (Opuntia Spp.). Scientia Horticulturae, 92: 317-327.
  • Fidancı, A. (2005). Şebin ve K2 ceviz çeşitlerin in vitro’da hızlı çoğaltılma tekniklerinin belirlenmesi. Bahçe, 34: 239-245.
  • Gotea, R., Gotea, I., Radu, E. S. and Vahdat, K. (2012). In vitro propagation of several walnut cultivars. Bull UASVM Horticulture, 69: 167-171.
  • Jain, S. M. and Ishii, K. (Eds.) (2012). Micropropagation of woody trees and fruits (Vol. 75). Springer Science Business Media, Netherlands.
  • Jay-Allemand, C., Capelli, P. and Cornu, D. (1992). Root development of in vitro hybrid walnut microcuttings in a vermiculite-containing gelrite medium. Scientia Horticulturae, 51 (3-4): 335-342.
  • Kefayeti, S., Kafkas, E. and Ercisli, S. (2019). Micropropagation of ‘Chester thornless’ blackberry cultivar using axillary bud explants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1): 162-168.
  • Kepenek, K. and Kolağasi, Z. (2016). Micropropagation of walnut (Juglans regia L.). Acta Physica Polonica A., 130(1): 150-156.
  • Khawar, K. M. and Özcan, S. (2002) High frequency shoot regeneration from cotyledonary node explants of different lentil (Lens culinaris Medik) genotypes and in vitro micrografting. Biotechnology & Biotechnological Equipment, 16: 12-17.
  • Koufan, M., Mazri, M. A., Essatte, A., Moussafir, S., Belkoura, I., El Rhaffari, L. and Toufik, I. (2020). A novel regeneration system through micrografting for Argania Spinosa (L.) skeels and confirmation of successful rootstock-scion union by histological analysis. Plant Cell Tissue Organ Culture, 142(2): 369-378.
  • Land, S. B. and Cunningham, M. (1994) Rooted Cutting Macropropagation of Hardwoods, In Foster G, Diner AM, eds, Applications of Vegetative Propagation in Forestry, Proc of The Southern Regional Information Exchange Group Biennial Symposium On Forest Genetics, Southern Forest Experiment Station New Orleans, Louisiana pp. 75-96.
  • Licea-Moreno, R. J., Contreras, A., Morales, A. V., Urban, I., Daquinta, M. and Gomez, L. (2015). Improved walnut mass micropropagation through the combined use of phloroglucinol and FeEDDHA. Plant Cell Tissue Organ Culture, 123(1): 143-154.
  • Martinez. L. M., Labuckas, D. O., Lamarque, A. L. and Maestri, D. M. (2010). Walnut (Juglans regia L.): Genetic Resources, Chemistry, By-Products. Journal of the Science of Food and Agriculture, 90: 1959-1967.
  • McClelland, M. T., Smith, M. A. L. and Carothers, Z. B. (1990). The effects of in vitro and ex vitro root initiation on subsequent microcutting root quality in three woody plants. Plant Cell Tissue Organ Culture, 23: 115-123.
  • Mcgranahan, G., Leslie, C. A. and Driver, J. A. (1988). In vitro propagation of mature Persian walnut cultivars. Horticulture Science, 23: 220.
  • Mitrofanova, I., Ivanova, N., Kuzmina, T., Mitrofanova, O. and Zubkova, N. (2021). In vitro regeneration of clematis plants in the nikita botanical garden via somatic embryogenesis and organogenesis. Frontiers in Plant Science, 12: 1-18.
  • Mneney, E. E. and Mantell, S. H. (2001). In vitro micrografting of cashew. Plant Cell, Tissue Organ Culture, 66: 49-58.
  • Murashige, T., Bitters, W. P., Rangan, T. S., Nauer, E. M., Roistachek, C. N. and Holliday, P. B. (1972). A technique of shoot apex grafting and its utilization towards recovering virus-free citrus clones. Horticulture Science, 7: 118-119.
  • Onay, A. (2000) Micropropagation of pistachio from mature trees. Plant Cell Tissue Organ Culture, 60: 159-163.
  • Paunović, S. M., Miletić, R., Janković, D., Janković, S. and Mitrović, M. (2013). Effect of humisol on survival and growth of nursery grafted walnut (Juglans regia L.) plants. Horticultural Science, 40: 111-118.
  • Pehlivan, E. C., Kunter, B. and Royandazagh, S. (2017) Choice of explant material and media for in vitro callus regeneration in Sultana grape cultivar (Vitis vinifera L.). Journal of Tekirdag Agricultural Faculty, Spec Issue: 30-34.
  • Rathore, J. S., Rathore, V., Shekhawat, N. S., Singh, R. P., Liler, G., Phulwaria, M. and Dagla, H. R. (2004). Plant Biotechnology and Molecular Markers, In A Narula, S Srivastava, eds, Micropropagation of Woody Plants, Anamaya Publishers, New Delhi, India, pp 195-205.
  • Ribeiro, H., Ribeiro, A., Pires, R., Cruz, J., Cardoso, H., Barroso, J. M. and Peixe, A. (2022). Ex vitro rooting and simultaneous micrografting of the walnut hybrid rootstock ‘Paradox’ (Juglans hindsi× Juglans regia) cl.‘Vlach’. Agronomy, 12: 595.
  • Ribeiro, L. M., Nery, L. A., Vieira, L. M. and Mercadante-Simões, M. O. (2015). Histological study of micrografting in passion fruit. Plant Cell Tissue Organ Culture, 123: 173-181.
  • Rodriguez, R. (1982a). Callus initiation and root formation from in vitro culture of walnut cotyledons. Horticultural Science, 17: 195-196.
  • Rodriguez, R. (1982b). Stimulation of multiple shoot-bud in walnut seeds. Horticultural Science, 17: 92.
  • Rodriguez, R. and Sanchez-Tames, R. (1981). Cultivo detejitos y differentiation en nogal. Revista de la Facultad de Ciencias Universidad de Oviedo Ser Biologia, 22: 21-28.
  • Royandazagh, D. S. (2019). Potential of flow cytometry in sex determination and in vitro micropropagation of Laurus nobilis L. Applied Ecology and Environmental Research, 17: 5953-5964.
  • Royandazagh, S. D. and Pehlivan, E. C. (2016). In vitro Micropropagation of Lilium candidum L. and alkaloids. Journal of Tekirdag Agricultural Faculty, 13(3): 100-110.
  • Saadat, Y. A. and Hennerty, M. J. (2002). Factors affecting the shoot multiplication of Persian walnut (Juglans regia L.). Scientia Horticulturae, 95: 251-260.
  • Sammona, O. S., Abde Elhamid, N. A. and Samaan, M. S. F. (2018). Effect of some factors on the micropropagation and micrografting of some grape rootstocks in vitro. Arab Universities Journal of Agricultural Sciences, 26: 133-146.
  • Scaltsoyiannes, A., Tsoulpha, P., Panetsos, K. P. and Moulalis, D. (1997). Effect of genotype on micropropagation of walnut trees (Juglans regia). Silvae Genetica, 46: 326-332.
  • Sekmen, Ș., Sesli, Y. and Sarısu, H.C. (2017). Establishing in vitro Propagation Protocol for Chandler Walnut Cultivar. Bahçe, 46: 169-174.
  • Sotiropoulos, T. E., Almaliotis, D., Papadakis, I., Dimassi, K. N. and Therios, I. N. (2006) Effects of different iron sources and concentrations on in vitro multiplication, rooting and nutritional status of the pear rootstock 'OHF 333'. European Journal of Horticultural Science, 71 (5): 222-226.
  • Trejgell, A., Libront, I. and Tretyn, A. (2012). The effect of Fe-EDDHA on shoot multiplication and in vitro rooting of Carlina onopordifolia Besser. Acta Physiologiae Plantarum, 34: 2051-2055.
  • Tsutsui, H. and Notaguchi, M. (2017). The use of grafting to study systemic signaling in plants. Plant and Cell Physiology, 58: 1291-1301.
  • Tuan, P. E., Meier-Dinkel, A., Holtken, A. M., Wenzlitschke, I. and Winkelmann, T. (2016). Paving the way for large-scale micropropagation of juglans × intermedia using genetically identified hybrid seed. Plant Cell Tissue Organ Culture, 126: 153-166.
  • Xiaoying, M., Yufei, H. and Guogang, C. (2014). Amino acid composition, molecular weight distribution and gel electrophoresis of walnut (Juglans regia L.) proteins and protein fractionations. International Journal of Molecular Sciences, 15:2003-2014.
  • Yulan, F., Feng, G. and Wie, W. (2003). Sterilization of Carya illinoensis explants in tissue culture. Journal of Anhui Agricultural University, 31: 169-172.
  • Zarghami, R. and Salari, A. (2015). Effect of different hormonal treatments on proliferation and rooting of three persian walnut (Juglans regia L.) genotypes. Pakistan Journal of Biological Sciences, 18: 260-266.
  • Zawadzka, M. and Orlikowska, T. (2009). Influence of FeEDDHA on in vitro rooting and acclimatization of red raspberry (Rubus idaeus L.) in peat and vermiculite. The Journal of Horticultural Science and Biotechnology, 84: 599-603.
There are 48 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology in Agriculture
Journal Section Articles
Authors

Tuba Türen 0000-0003-3502-3029

Şeyda Savalan 0000-0002-7047-0943

Elif Pehlivan 0000-0001-5632-2955

Early Pub Date May 21, 2024
Publication Date May 27, 2024
Submission Date September 29, 2023
Acceptance Date March 17, 2024
Published in Issue Year 2024 Volume: 21 Issue: 3

Cite

APA Türen, T., Savalan, Ş., & Pehlivan, E. (2024). Influence of FeSO4.7H2O, Indole-3-Butyric Acid and Different Nutrient Medium on In Vitro Sapling Propagation and Micrografting of Walnut (Juglans Regia L.). Tekirdağ Ziraat Fakültesi Dergisi, 21(3), 748-758. https://doi.org/10.33462/jotaf.1368566
AMA Türen T, Savalan Ş, Pehlivan E. Influence of FeSO4.7H2O, Indole-3-Butyric Acid and Different Nutrient Medium on In Vitro Sapling Propagation and Micrografting of Walnut (Juglans Regia L.). JOTAF. May 2024;21(3):748-758. doi:10.33462/jotaf.1368566
Chicago Türen, Tuba, Şeyda Savalan, and Elif Pehlivan. “Influence of FeSO4.7H2O, Indole-3-Butyric Acid and Different Nutrient Medium on In Vitro Sapling Propagation and Micrografting of Walnut (Juglans Regia L.)”. Tekirdağ Ziraat Fakültesi Dergisi 21, no. 3 (May 2024): 748-58. https://doi.org/10.33462/jotaf.1368566.
EndNote Türen T, Savalan Ş, Pehlivan E (May 1, 2024) Influence of FeSO4.7H2O, Indole-3-Butyric Acid and Different Nutrient Medium on In Vitro Sapling Propagation and Micrografting of Walnut (Juglans Regia L.). Tekirdağ Ziraat Fakültesi Dergisi 21 3 748–758.
IEEE T. Türen, Ş. Savalan, and E. Pehlivan, “Influence of FeSO4.7H2O, Indole-3-Butyric Acid and Different Nutrient Medium on In Vitro Sapling Propagation and Micrografting of Walnut (Juglans Regia L.)”, JOTAF, vol. 21, no. 3, pp. 748–758, 2024, doi: 10.33462/jotaf.1368566.
ISNAD Türen, Tuba et al. “Influence of FeSO4.7H2O, Indole-3-Butyric Acid and Different Nutrient Medium on In Vitro Sapling Propagation and Micrografting of Walnut (Juglans Regia L.)”. Tekirdağ Ziraat Fakültesi Dergisi 21/3 (May 2024), 748-758. https://doi.org/10.33462/jotaf.1368566.
JAMA Türen T, Savalan Ş, Pehlivan E. Influence of FeSO4.7H2O, Indole-3-Butyric Acid and Different Nutrient Medium on In Vitro Sapling Propagation and Micrografting of Walnut (Juglans Regia L.). JOTAF. 2024;21:748–758.
MLA Türen, Tuba et al. “Influence of FeSO4.7H2O, Indole-3-Butyric Acid and Different Nutrient Medium on In Vitro Sapling Propagation and Micrografting of Walnut (Juglans Regia L.)”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 21, no. 3, 2024, pp. 748-5, doi:10.33462/jotaf.1368566.
Vancouver Türen T, Savalan Ş, Pehlivan E. Influence of FeSO4.7H2O, Indole-3-Butyric Acid and Different Nutrient Medium on In Vitro Sapling Propagation and Micrografting of Walnut (Juglans Regia L.). JOTAF. 2024;21(3):748-5.