Research Article
BibTex RIS Cite

Classification of Open and Closed Pistachio Shells Using Machine Vision Approach

Year 2024, Volume: 21 Issue: 4, 854 - 864, 20.09.2024
https://doi.org/10.33462/jotaf.1250018

Abstract

Pistachio nuts are a type of nut that is widely consumed around the world due to their high nutritional value and pleasant taste. Pistachios are usually sold in their shells, either open or closed. However, closed-shell pistachios are not well received by consumers, resulting in a lower commercial value. It is essential to be able to distinguish between open and closed pistachio shells in order to ensure quality control during production processes and processing. This can be done manually or by using mechanical devices. Manual inspection and categorization of pistachio nuts have traditionally been done by workers, but this process is inefficient in terms of time and money. Mechanical separation of open and closed-shell pistachio can damage the kernels of open-shell nuts due to the needle mechanism used in the sorting process. This study aims to classify pistachio nuts using a machine vision-based system and evaluate its applicability in terms of classification accuracy. The system is evaluated on the Antep pistachio species, which can be distinguished from other pistachio varieties, such as Siirt and Urfa pistachios, based on their shape, size, and taste properties. The machine vision system in this study classifies pistachio nuts into closed and open shell classes in a completely automated manner. In this study, 1,000 Antep pistachio nuts images were obtained and examined, including 500 open and 500 closed nuts. The images were pre-processed and prepared for feature extraction. From the images, a total of 14 color features were extracted. Although the single feature was used, promising classification accuracy rates of 95.6%, 94.8%, and 93.6% from the Random Forest, Support Vector Machine (SVM), and Logistic Regression were achieved, respectively. The performances of classifiers were compared to each other. Almost similar performances were detected. These results demonstrate that the Random Forest classifier is the most effective algorithm for classifying open and closed Antep pistachio nuts.

Project Number

PYO.ZRT.1904.23.003

References

  • Ak, B. and Acar, I. (2001). Pistachio Production and Cultivated Varieties Grown in Turkey. Project on Underutilized Mediterranean Species. Pistacia: Towards a Comprehensive Documentation of Distribution and Use of Its Genetic Diversity in Central & West Asia, North Africa and Mediterranean Europe. Report Of The Ipgri Workshop, 14-17 December 1998, Irbid, Jordan.
  • Aktaş, H., Kızıldeniz, T. and Ünal, Z. (2022). Classification of pistachios with deep learning and assessing the effect of various datasets on accuracy. Journal of Food Measurement and Characterization, 16(3): 1983-1996. https://doi.org/10.1007/s11694-022-01313-5
  • Ataş, M. and Doğan, Y. (2015). Classification of Closed and Open Shell Pistachio Nuts by Machine Vision. International Conference on advanced Technology Sciences, Antalya, Türkiye.
  • Baitu, G. P., Gadalla, O. A. A. and Öztekin, Y. B. (2023). Traditional machine learning-based classification of cashew kernels using colour features. Journal of Tekirdağ Agricultraul Faculty, 20(1): 115-124.
  • Çınar, I. and Koklu, M. (2022). Identification of rice varieties using machine learning algorithms. Journal of Agricultural Sciences, 28(2): 307-325. https://doi.org/10.15832/ankutbd.862482
  • Faostat (2022). Food and Agriculture Data. https://www.fao.org/faostat/en/
  • Farhadi, M., Abbaspour-Gilandeh, Y., Mahmoudi, A. And Mari Maja, J. (2020). An integrated system of artificial intelligence and signal processing techniques for the sorting and grading of nuts. Applied Sciences, 10(9): 3315.
  • Ghezelbash, J., Borghaee, A. M., Minaei, S., Fazli, S. and Moradi, M. (2013). Design and implementation of a low cost computer vision system for sorting of closed-shell pistachio nuts. African Journal of Agricultural Research, 8(49): 6479–6484. https://doi.org/10.5897/ajar10.1162
  • Hosseinpour-Zarnaq, M., Omid, M., Taheri-Garavand, A., Nasiri, A. and Mahmoudi, A. (2022). Acoustic signal-based deep learning approach for smart sorting of pistachio nuts. Postharvest Biology and Technology, 185: 111778. https://doi.org/10.1016/j.postharvbio.2021.111778
  • Hossin, M. and Sulaiman, M. N. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2): 01-11. https://doi.org/10.5121/ijdkp.2015.5201
  • Jalali, A. and Mahmoudi, A. (2013). Pistachio nut varieties sorting by data mining and fuzzy logic classifier. International Journal of Agriculture and Crop Sciences, 5(2): 101–108.
  • Lisda, L., Kusrini, K. and Ariatmanto, D. (2023). Classification of pistachio nut using convolutional neural network. Inform: Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 8(1): 71-77.
  • Omid, M. (2011). Design of an expert system for sorting pistachio nuts through decision tree and fuzzy logic classifier. Expert Systems with Applications, 38(4), 4339-4347. https://doi.org/10.1016/j.eswa.2010.09.103
  • Ozkan, I. A., Koklu, M. and Saraçoğlu, R. (2021). Classification of pistachio species using improved k-nn classifier. Progress in Nutrition, 23(2): e2021044. https://doi.org/10.23751/pn.v23i2.9686
  • Pearson, T. C., Doster, M. A. and Michailides, T. J. (2001). Automated detection of pistachio defects by machine vision. Applied Engineering in Agriculture, 17(5), 729. https://doi.org/10.13031/2013.6905
  • Rahimzadeh, M. and Attar, A. (2022). Detecting and counting pistachios based on deep learning. Iran Journal of Computer Science, 5(1): 69-81.
  • Singh, D., Taspinar, Y. S., Kursun, R., Cinar, I., Koklu, M., Ozkan, I. A. and Lee, H. N. (2022). Classification and analysis of pistachio species with pre-trained deep learning models. Electronics, 11(7): 1–14. https://doi.org/10.3390/electronics11070981.
  • Yaghoubi, M. and Niknami, M. (2022). Challenges of precision agriculture application in pistachio orchards: factor analysis from Iranian Agricultural Experts' Perspective. Journal of Tekirdağ Agricultrual Faculty, 19(3): 473-482.

Makina Görme Yaklaşımı Kullanılarak Açık ve Kapalı Antep Fıstığı Kabuklarının SınıflandırılmasıMakina Görme Yaklaşımı Kullanılarak Açık ve Kapalı Antep Fıstığı Kabuklarının Sınıflandırılması

Year 2024, Volume: 21 Issue: 4, 854 - 864, 20.09.2024
https://doi.org/10.33462/jotaf.1250018

Abstract

Antep fıstığı, besin değeri yüksek ve hoş tadı nedeniyle dünya çapında yaygın olarak tüketilen bir fıstık türüdür. Genellikle Antep fıstığı açık veya kapalı kabuklu olarak satılmaktadır. Ancak, kapalı kabuklu Antep fıstığı tüketiciler tarafından tercih edilmemekte ve bu da fıstığın ticari değerinin düşmesine neden olmaktadır. Üretim süreçleri ve işleme sırasında kalite kontrolünü sağlamak için açık ve kapalı uçlu Antep fıstığı kabuklarını ayırt edebilmek esastır. Bu manuel olarak veya mekanik cihazlar kullanılarak yapılabilir. Manuel sınıflandırma işlemi işçiler tarafından yapılmakta olup bu şekilde yapılan ayırma işlemi zaman ve maliyet açısından verimsiz sayılmaktadır. Mekanik sınıflandırma işleminde ise fıstığının mekanik olarak ayrılması, ayıklama işleminde kullanılan iğne mekanizması nedeniyle açık kabuklu somunların çekirdeklerine zarar verebilmektedir. Bu çalışma, Antep fıstığı tanelerinin makina görme tabanlı bir sistem kullanılarak sınıflandırılmasını ve sınıflandırma doğruluğu açısından uygulanabilirliğinin değerlendirilmesini amaçlamaktadır. Bu çalışmada kullanılan sistem, Siirt ve Urfa fıstıklarından şekil, boyut ve tat özellikleri bakımından farklı olan Antep fıstığı çeşidi için yapılan değerlendirmeleri içermektedir. Bu çalışmadaki makina görme sistemi, Antep fıstığı tanelerini tamamen otomatik bir şekilde kapalı ve açık uçlu kabuk sınıflarına ayırabilmektedir. Bu çalışmada 500 açık ve 500 kapalı uçlu tane olmak üzere 1.000 adet Antep fıstığı tane görüntüsü elde edilmiş ve incelenmiştir. Görüntüler işlenerek özellik çıkarma için hazırlanmıştır. Görüntülerden toplam 14 renk özelliği çıkarılmıştır. Tek özellik kullanılmasına rağmen, Rastgele Orman, Destek Vektör Makinesi ve Lojistik Regresyon modellerinden sırasıyla % 95.6,% 94.8 ve% 93.6'lık umut verici sınıflandırma doğruluk oranları elde edilmiştir. Sınıflandırıcıların performansları birbirleriyle karşılaştırılmıştır. Sınıflandırıcılar arasında yaklaşık benzer performanslar elde edilmiştir. Bu sonuçlar, Rastgele Orman sınıflandırıcısının, açık ve kapalı kabuklu uçlu olarak Antep fıstığı tanelerini sınıflandırmak için en etkili algoritma olduğunu göstermektedir.

Supporting Institution

Ondokuz Mayıs Üniversitesi

Project Number

PYO.ZRT.1904.23.003

References

  • Ak, B. and Acar, I. (2001). Pistachio Production and Cultivated Varieties Grown in Turkey. Project on Underutilized Mediterranean Species. Pistacia: Towards a Comprehensive Documentation of Distribution and Use of Its Genetic Diversity in Central & West Asia, North Africa and Mediterranean Europe. Report Of The Ipgri Workshop, 14-17 December 1998, Irbid, Jordan.
  • Aktaş, H., Kızıldeniz, T. and Ünal, Z. (2022). Classification of pistachios with deep learning and assessing the effect of various datasets on accuracy. Journal of Food Measurement and Characterization, 16(3): 1983-1996. https://doi.org/10.1007/s11694-022-01313-5
  • Ataş, M. and Doğan, Y. (2015). Classification of Closed and Open Shell Pistachio Nuts by Machine Vision. International Conference on advanced Technology Sciences, Antalya, Türkiye.
  • Baitu, G. P., Gadalla, O. A. A. and Öztekin, Y. B. (2023). Traditional machine learning-based classification of cashew kernels using colour features. Journal of Tekirdağ Agricultraul Faculty, 20(1): 115-124.
  • Çınar, I. and Koklu, M. (2022). Identification of rice varieties using machine learning algorithms. Journal of Agricultural Sciences, 28(2): 307-325. https://doi.org/10.15832/ankutbd.862482
  • Faostat (2022). Food and Agriculture Data. https://www.fao.org/faostat/en/
  • Farhadi, M., Abbaspour-Gilandeh, Y., Mahmoudi, A. And Mari Maja, J. (2020). An integrated system of artificial intelligence and signal processing techniques for the sorting and grading of nuts. Applied Sciences, 10(9): 3315.
  • Ghezelbash, J., Borghaee, A. M., Minaei, S., Fazli, S. and Moradi, M. (2013). Design and implementation of a low cost computer vision system for sorting of closed-shell pistachio nuts. African Journal of Agricultural Research, 8(49): 6479–6484. https://doi.org/10.5897/ajar10.1162
  • Hosseinpour-Zarnaq, M., Omid, M., Taheri-Garavand, A., Nasiri, A. and Mahmoudi, A. (2022). Acoustic signal-based deep learning approach for smart sorting of pistachio nuts. Postharvest Biology and Technology, 185: 111778. https://doi.org/10.1016/j.postharvbio.2021.111778
  • Hossin, M. and Sulaiman, M. N. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2): 01-11. https://doi.org/10.5121/ijdkp.2015.5201
  • Jalali, A. and Mahmoudi, A. (2013). Pistachio nut varieties sorting by data mining and fuzzy logic classifier. International Journal of Agriculture and Crop Sciences, 5(2): 101–108.
  • Lisda, L., Kusrini, K. and Ariatmanto, D. (2023). Classification of pistachio nut using convolutional neural network. Inform: Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 8(1): 71-77.
  • Omid, M. (2011). Design of an expert system for sorting pistachio nuts through decision tree and fuzzy logic classifier. Expert Systems with Applications, 38(4), 4339-4347. https://doi.org/10.1016/j.eswa.2010.09.103
  • Ozkan, I. A., Koklu, M. and Saraçoğlu, R. (2021). Classification of pistachio species using improved k-nn classifier. Progress in Nutrition, 23(2): e2021044. https://doi.org/10.23751/pn.v23i2.9686
  • Pearson, T. C., Doster, M. A. and Michailides, T. J. (2001). Automated detection of pistachio defects by machine vision. Applied Engineering in Agriculture, 17(5), 729. https://doi.org/10.13031/2013.6905
  • Rahimzadeh, M. and Attar, A. (2022). Detecting and counting pistachios based on deep learning. Iran Journal of Computer Science, 5(1): 69-81.
  • Singh, D., Taspinar, Y. S., Kursun, R., Cinar, I., Koklu, M., Ozkan, I. A. and Lee, H. N. (2022). Classification and analysis of pistachio species with pre-trained deep learning models. Electronics, 11(7): 1–14. https://doi.org/10.3390/electronics11070981.
  • Yaghoubi, M. and Niknami, M. (2022). Challenges of precision agriculture application in pistachio orchards: factor analysis from Iranian Agricultural Experts' Perspective. Journal of Tekirdağ Agricultrual Faculty, 19(3): 473-482.
There are 18 citations in total.

Details

Primary Language English
Subjects Agricultural Machine Systems
Journal Section Articles
Authors

Khaled Adil Dawood Idress 0000-0002-1631-6232

Y. Benal Öztekin 0000-0003-2387-2322

Omsalma Alsadig Adam Gadalla 0000-0001-6132-4672

Project Number PYO.ZRT.1904.23.003
Early Pub Date September 12, 2024
Publication Date September 20, 2024
Submission Date February 14, 2023
Acceptance Date August 1, 2024
Published in Issue Year 2024 Volume: 21 Issue: 4

Cite

APA Idress, K. A. D., Öztekin, Y. B., & Gadalla, O. A. A. (2024). Classification of Open and Closed Pistachio Shells Using Machine Vision Approach. Tekirdağ Ziraat Fakültesi Dergisi, 21(4), 854-864. https://doi.org/10.33462/jotaf.1250018
AMA Idress KAD, Öztekin YB, Gadalla OAA. Classification of Open and Closed Pistachio Shells Using Machine Vision Approach. JOTAF. September 2024;21(4):854-864. doi:10.33462/jotaf.1250018
Chicago Idress, Khaled Adil Dawood, Y. Benal Öztekin, and Omsalma Alsadig Adam Gadalla. “Classification of Open and Closed Pistachio Shells Using Machine Vision Approach”. Tekirdağ Ziraat Fakültesi Dergisi 21, no. 4 (September 2024): 854-64. https://doi.org/10.33462/jotaf.1250018.
EndNote Idress KAD, Öztekin YB, Gadalla OAA (September 1, 2024) Classification of Open and Closed Pistachio Shells Using Machine Vision Approach. Tekirdağ Ziraat Fakültesi Dergisi 21 4 854–864.
IEEE K. A. D. Idress, Y. B. Öztekin, and O. A. A. Gadalla, “Classification of Open and Closed Pistachio Shells Using Machine Vision Approach”, JOTAF, vol. 21, no. 4, pp. 854–864, 2024, doi: 10.33462/jotaf.1250018.
ISNAD Idress, Khaled Adil Dawood et al. “Classification of Open and Closed Pistachio Shells Using Machine Vision Approach”. Tekirdağ Ziraat Fakültesi Dergisi 21/4 (September 2024), 854-864. https://doi.org/10.33462/jotaf.1250018.
JAMA Idress KAD, Öztekin YB, Gadalla OAA. Classification of Open and Closed Pistachio Shells Using Machine Vision Approach. JOTAF. 2024;21:854–864.
MLA Idress, Khaled Adil Dawood et al. “Classification of Open and Closed Pistachio Shells Using Machine Vision Approach”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 21, no. 4, 2024, pp. 854-6, doi:10.33462/jotaf.1250018.
Vancouver Idress KAD, Öztekin YB, Gadalla OAA. Classification of Open and Closed Pistachio Shells Using Machine Vision Approach. JOTAF. 2024;21(4):854-6.