Research Article
BibTex RIS Cite

Farklı Kabakgil Genotiplerinin Kabak Sarı Mozaik Virüsü (Zucchini Yellow Mosaic Virus-ZYMV)’ne Karşı Duyarlılıklarının Belirlenmesi

Year 2024, Volume: 21 Issue: 4, 880 - 891
https://doi.org/10.33462/jotaf.1283160

Abstract

Oldukça farklı özelliklere sahip türlerin yer aldığı Cucurbitaceae familyasının üyeleri gıda, ilaç ve süs amaçlı kullanılmaktadır. Ancak çoğu bitki hastalığı ve zararlısı kabakgillerde verim ve kalite kayıplarına neden olmaktadır. Kabakgil üretiminde ciddi verim kayıplarına neden olan bu hastalıkların en önemlilerinden biri dünya çapında en yaygın görülen potyvirüslerden biri olan kabak sarı mozaik virüsüdür (ZYMV). Kabak sarı mozaik virüsü, sararma, beneklenme, kıvrılma, deformasyon, mozaikleşme, boğum aralarının kısalması ve kalınlaşması gibi belirtiler göstermekle birlikte verim ve kalite kaybına da neden olabilmektedir. Bilindiği gibi viral hastalıklara karşı etkili bir kimyasal mücadele mevcut olmayıp, dirençli veya toleranslı çeşitlerin kullanılması en etkili çözümdür. Bu çalışmada Türkiye'nin farklı yerlerinden toplanan 92 karpuz, 14 çekirdeklik kabak ve 29 süs kabağı genotipi, ZYMV'ye karşı test edilmiştir. Farklı karpuz genotipleri ve kabaklarda ZYMV belirtileri 21 gün boyunca gözlemlenmiştir. İnokulasyon sonrası sistemik enfeksiyon gösteren genotipler 0-5 hastalık skalasına göre değerlendirilmiştir. Ayrıca RT-PCR testiyle, dokuz simptomsuz kontrol bitkisi, 5 skala değerine giren ZYMV'ye duyarlı yedi genotip, toleranslı kabul edilen 1 skala değerine giren bir genotip ve C. lanatus var. sitroidler testlenmiştir. Sonuçlara göre bazı karpuz ve süs kabağı genotiplerinin toleranslı olarak değerlendirilebileceği belirlendi. PI560016 erişim numarasına sahip karpuzun Türkiye'deki yerel ZYMV türüne karşı dirençli olduğu belirlendi. Karpuz genotipleri arasında farklı duyarlılık düzeyleri tespit edilmesine rağmen tüm kabak genotiplerinin Türkiye'nin yerel ZYMV türüne karşı duyarlı olduğu tespit edilmiştir.

References

  • Agrios, G. (2005). Plant pathology. Elsevier Academic Press. 767p.
  • Aliyu, T. H., Balogun, O. S. and Uddin, R. O. (2013). Cowpea virus disease occurrence: implication for food security and sustainable development in Kwara State-Nigeria. Albanian Journal of Agricultural Sciences, 12:4-633.
  • Balint, R., Plooy, I. and Steele, C. (1990). The nucleotide sequence of zucchini yellow mosaic potyvirus. Abstr. VIIIth International Congress Virology. 8:84–107.
  • Blua, M. J. and Perring, T. M. (1992). Alatae production and population increase of aphid vectors on virus-infected host plants. Oecologia 92:65-70.
  • Capuozzo, C., Formisano, G., Iovieno, P., Andolfo, G., Tomassoli, L., Barbella, M. M. and Ercolano, M. R. (2017). Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo. Molecular Breeding, 37(8):1-12.
  • Coskun, Ö. F., (2019). Determination of molecular markers associated with locus controlling some characters affecting yield and quality in watermelon. (Ph.D. Thesis). Erciyes University, Graduate School of Natural and Applied Sciences. Kayseri. (In Turkish).
  • Dalda-Şekerci, A., Karaman, K., Yetisir, H. and Sagdic, O. (2017). Change in morphological properties and fatty acid composition of ornamental pumpkin seeds (Cucurbita pepo var. ovifera) and their classification by chemometric analysis. Journal of Food Measurement and Characterization, 11(3):1306-1314.
  • Dalda-Şekerci, A., Karaman, K. and Yetişir, H. (2020). Characterization of ornamental pumpkin (Cucurbita pepo L. var. ovifera (L.) Alef.) genotypes: molecular, morphological and nutritional properties. Genetic Resources and Crop Evolution, 67(3):533-547.
  • Fidan, H., Unlu, M. and Unlu, A. (2012). Determination of Batem’s melon pure lines for resistance to ZYMV. Xth EUCARPIA International Meeting on Genetics and Breeding of Cucurbitaceae, 466-471.
  • Gal-On, A. (2007). Zucchini yellow mosaic virus: Insect transmission and pathogenicity – The tails of two proteins. Molecular Plant Pathology, 8:139–150.
  • Gáspár, S., Basal, O., Simkó, A., László, K. and Frommer, D., Veres, S. (2022). Production of Hull-less mutant of pumpkin seed under different abiotic conditions. Journal of Tekirdag Agricultural Faculty, 19(3), 508-514.
  • Guner, N., Pesic-VanEsbroeck, Z., Rivera-Burgos, L. A. and Wehner, T. C., (2019). Screening for resistance to Zucchini Yellow Mosaic Virus in the watermelon germplasm. Hortsciıence, 54(2):206–211.
  • Guner, N., Rivera-Burgos, L. A. and Wehner, T. C. (2018). Inheritance of resistance to Zucchini Yellow Mosaic Virus in watermelon. HortScience, 53:1115–1118.
  • Harris, K. R., Ling, K. S., Wechter, W. P. and Levi, A. (2009). Identification and utility of markers linked to the zucchini yellow mosaic virus resistance gene in watermelon. Journal of the American Society for Horticultural Science, 134(5):529-534.
  • Helvaci, M., Yılmaz, N. and Fidan, H. (2019). Evaluation of some cucurbit accessions collected from Northern Cyprus for resistance to Zucchini Yellow Mosaic Virus (ZYMV). Fresenius Environmental Bulletin, 28(7):5402-5404.
  • Lecoq, H. and Desbiez, C. (2012). Viruses of cucurbit crops in the Mediterranean region: an ever-changing picture. Advances in Virus Research, 84:67–126.
  • Lecoq, H., Pitrat, M. and Clément, M. (1981). Identification et caractérisation d'un potyvirus provoquant la maladie du rabougrissement jaune du melon. Agronomie, 1:827–834. (in French).
  • Ling, K. S. and Levi, A. (2007). Sources of resistance to Zucchini yellow mosaic virus in Lagenaria siceraria germplasm. HortScience, 42(5):1124-1126.
  • Lisa, V., Boccardo, G., D’Agostino, G., Dellavalle, G. and d’Aquilio, M. (1981). Characterization of a potyvirus that causes zucchini yellow mosaic virus. Phytopathology, 71:667–672.
  • Massumi, H., Shaabanian, M., Heydarnejad, J., Hosseini Pour, A.H. and Rahimian, H., (2011). Host range and phylogenetic analysis of Iranian isolates of Zucchini yellow mosaic virus. Journal of Plant Pathology, 93:187–193.
  • Moradi, Z., Mehrvar, M. and Nazifi, E. (2019). Population genetic analysis of Zucchini yellow mosaic virus based on the CI Gene Sequence. Journal of Cell and Molecular Research, 10(2):76-89.
  • Morilipinar, E. O., Şekerci, A.D., Coşkun, Ö. F. and Gülşen, O. (2021). Genetic analysis of local pumpkin populations: genetic analysis of local pumpkin populations. International Journal of Agricultural and Natural Sciences, 14(3):264-272.
  • Nacar, Ç., Aras, V., Tekin, S. and Fidan, H. (2021). Determination of specific combining ability of ZYMV tolerant lines in summer squash. Alatarım, 20(2): 60-69. (In Turkish).
  • Pachner, M., Paris, H. S., Winkler, J. and Lelley, T. (2015). Phenotypic and marker assisted pyramiding of genes for resistance to zucchini yellow mosaic virus in oilseed pumpkin (Cucurbita pepo). Plant Breeding, 134(1):121-128.
  • Pandawani, N. P. and Widnyana, I. K. (2021). Identification of virus causes of mosaic diseases in zucchini plants in the Bali Island of Indonesia. Journal of Tekirdag Agricultural Faculty, 18(3): 411-418.
  • Papayiannis, L. C., Ioannou, N., Boubourakas, I. N., Dovas, C. I., Katis, N. I. and Falk, B. W. (2005). Incidence of viruses infecting cucurbits in Cyprus. Journal of Phytopathology, 153(9):530-535.
  • Presting, G. G., Smith, O. P. and Brown, C. R. (1995). Resistance to potato leafroll virus in potato plants transformed with the coat protein gene or with vector control constructs. Phytopathology, 85:436-442.
  • Provvidenti, R. (1991). Inheritance of resistance to the Florida strain of Zucchini Yellow Mosaic Virus in watermelon. Hort Science, 26:407-408.
  • Radwan, D. E. M., Fayez, K. A., Mahmoud, S. Y., Hamad, A. and Lu, G. (2007). Physiological and metabolic changes of Cucurbita pepo leaves in response to zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiology and Biochemistry, 45(6-7):480-489.
  • Shrestha, S., Michael, V. N., Fu, Y. and Meru, G. (2021). Genetic loci associated with resistance to Zucchini Yellow Mosaic Virus in squash. Plants, 10:1935.
  • Sidek, Z., Sako, N. and Ohshima, K. (1999). Characterization and coat protein sequence of a Malaysian isolate of Zucchini yellow mosaic virus. Journal of Plant Protection in Tropics, 12(2):92-105.
  • Simmons, H. E., Holmes, E. C., Gildow, F. E., Bothe-Goralczyk, M. A. and Stephenson, A. G. (2011). Experimental verification of seed transmission of Zucchini yellow mosaic virus. Plant Disease, 95:751–754.
  • Simmons, H. E., Dunham, J. P., Zinn, K. E., Munkvold, G. P., Holmes, E. C. and Stephenson, A. G. (2013). Zucchini yellow mosaic virus (ZYMV, Potyvirus): vertical transmission, seed infection and cryptic infections. Virus Research, 176(1-2):259-264.
  • Solmaz, I., Kaçar, Y., Sari, N. and Şimşek, Ö. (2016). Genetic diversity within Turkish watermelon [Citrullus lanatus (Thunb.) Matsumura & Nakai] accessions revealed by SSR and SRAP markers. Turkish Journal of Agriculture and Forestry, 40(3):407-419.
  • Solmaz, I. and Sarı, N. (2009). Characterization of watermelon (Citrullus lanatus) accessions collected from Turkey for morphological traits. Genetic Resources and Crop Evolution, 56(2):173-188.
  • Thies, J. A., Ariss, J. J., Kousik, C. S., Hassell, R. L. and Levi, A. (2016). Resistance to southern root-knot nematode in wild watermelon (var.). Journal of Nematology, 48(1):14-19.
  • Ünlü, E., Yetişir, H., Fidan, H. and Denli, N. (2020). Resistance sources to Zucchini Yellow Mosaic Virus in Turkish bottle gourd [Lagenaria siceraria (Molina) Standl.] Germplasm. Indian Horticulture Journal, 10(3/4):45-55.
  • USDA (2020). USDA-ARS Germplasm Resources Information Network (GRIN) http://www.ars-grin.gov/npgs . (Accessed Date: 13.06.2023).
  • Wang, H. L., Gonsalves, D., Provvidenti, R. and Zitter, T. A. (1992). Comparative biological and serological properties of four strains of Zucchini yellow mosaic virus. Plant Disease, 76 (5):530-535.
  • Wechter, W. P., McMillan, M. M., Farnham, M. W. and Levi, A. (2016). Watermelon Germplasm Lines USVL246-FR2 and USVL252-FR2 Tolerant to Fusarium oxysporum f. sp.niveum Race 2. Hortscience, 51(8):1065–1067.
  • Yanmaz, R. and Düzeltir, B. (2003). Cultivation of zucchinis (pumpkin seeds). Ekin Dergisi, 7(6):22-24. (In Turkish).
  • Yılmaz, M. A., Lecoq, H., Abak, K., Baloğlu, S. and Sarı, N. (1992). Viruses Causing Damage to Cucurbit Vegetable Species in Turkey. Turkey I. National Horticultural Congress, 13–16 October, İzmir. II, 439-442. (In Turkish).

Assessment of Different Cucurbit Genotypes for Resistance to Zucchini Yellow Mosaic Virus (ZYMV)

Year 2024, Volume: 21 Issue: 4, 880 - 891
https://doi.org/10.33462/jotaf.1283160

Abstract

Members of the Cucurbitaceae family, which includes species with quite different characteristics, have been used for food, medicine, and ornamental purposes for a long time. However, most plant diseases and pests cause yield and quality losses in cucurbits, and one of the most important of these diseases is zucchini yellow mosaic virus (ZYMV), which one of the most common potyviruses worldwide and causes serious yield losses in cucurbit production worldwide. Zucchini Yellow Mosaic Virus shows symptoms such as yellowing, mottling, curling, deformation, mosaic, shortening and thickening of the internodes, and may also cause loss of yield and quality. As widely known, there is no effective chemical control of viral diseases, and the use of resistant or tolerant varieties is the most effective solution. In this study, 92 watermelon genotypes, 14 zucchinis (pumpkin seeds) and 29 ornamental pumpkins collected from different parts of Türkiye were tested against ZYMV. Symptoms of ZYMV in different watermelon genotypes and pumpkins were observed for 21 days. Genotypes showing systemic infection after inoculation were evaluated on a scale of 0-5. Also, RT-PCR studies were carried out on selecting nine symptomless control plants, seven ZYMV-sensitive genotypes showing 5-scale value, one genotype with 1-scale value considered tolerant, and one genotype belongs to C. lanatus var. citroides. According to the results, it was determined that some watermelon and ornamental pumpkin genotypes could be considered as tolerant. Watermelon, which was having accession number PI560016, was found resistant to Turkish local strain of ZYMV. Although different susceptibility levels were detected between watermelon genotypes, all pumpkin genotypes were discovered to be susceptible to the Turkish local strain of ZYMV.

References

  • Agrios, G. (2005). Plant pathology. Elsevier Academic Press. 767p.
  • Aliyu, T. H., Balogun, O. S. and Uddin, R. O. (2013). Cowpea virus disease occurrence: implication for food security and sustainable development in Kwara State-Nigeria. Albanian Journal of Agricultural Sciences, 12:4-633.
  • Balint, R., Plooy, I. and Steele, C. (1990). The nucleotide sequence of zucchini yellow mosaic potyvirus. Abstr. VIIIth International Congress Virology. 8:84–107.
  • Blua, M. J. and Perring, T. M. (1992). Alatae production and population increase of aphid vectors on virus-infected host plants. Oecologia 92:65-70.
  • Capuozzo, C., Formisano, G., Iovieno, P., Andolfo, G., Tomassoli, L., Barbella, M. M. and Ercolano, M. R. (2017). Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo. Molecular Breeding, 37(8):1-12.
  • Coskun, Ö. F., (2019). Determination of molecular markers associated with locus controlling some characters affecting yield and quality in watermelon. (Ph.D. Thesis). Erciyes University, Graduate School of Natural and Applied Sciences. Kayseri. (In Turkish).
  • Dalda-Şekerci, A., Karaman, K., Yetisir, H. and Sagdic, O. (2017). Change in morphological properties and fatty acid composition of ornamental pumpkin seeds (Cucurbita pepo var. ovifera) and their classification by chemometric analysis. Journal of Food Measurement and Characterization, 11(3):1306-1314.
  • Dalda-Şekerci, A., Karaman, K. and Yetişir, H. (2020). Characterization of ornamental pumpkin (Cucurbita pepo L. var. ovifera (L.) Alef.) genotypes: molecular, morphological and nutritional properties. Genetic Resources and Crop Evolution, 67(3):533-547.
  • Fidan, H., Unlu, M. and Unlu, A. (2012). Determination of Batem’s melon pure lines for resistance to ZYMV. Xth EUCARPIA International Meeting on Genetics and Breeding of Cucurbitaceae, 466-471.
  • Gal-On, A. (2007). Zucchini yellow mosaic virus: Insect transmission and pathogenicity – The tails of two proteins. Molecular Plant Pathology, 8:139–150.
  • Gáspár, S., Basal, O., Simkó, A., László, K. and Frommer, D., Veres, S. (2022). Production of Hull-less mutant of pumpkin seed under different abiotic conditions. Journal of Tekirdag Agricultural Faculty, 19(3), 508-514.
  • Guner, N., Pesic-VanEsbroeck, Z., Rivera-Burgos, L. A. and Wehner, T. C., (2019). Screening for resistance to Zucchini Yellow Mosaic Virus in the watermelon germplasm. Hortsciıence, 54(2):206–211.
  • Guner, N., Rivera-Burgos, L. A. and Wehner, T. C. (2018). Inheritance of resistance to Zucchini Yellow Mosaic Virus in watermelon. HortScience, 53:1115–1118.
  • Harris, K. R., Ling, K. S., Wechter, W. P. and Levi, A. (2009). Identification and utility of markers linked to the zucchini yellow mosaic virus resistance gene in watermelon. Journal of the American Society for Horticultural Science, 134(5):529-534.
  • Helvaci, M., Yılmaz, N. and Fidan, H. (2019). Evaluation of some cucurbit accessions collected from Northern Cyprus for resistance to Zucchini Yellow Mosaic Virus (ZYMV). Fresenius Environmental Bulletin, 28(7):5402-5404.
  • Lecoq, H. and Desbiez, C. (2012). Viruses of cucurbit crops in the Mediterranean region: an ever-changing picture. Advances in Virus Research, 84:67–126.
  • Lecoq, H., Pitrat, M. and Clément, M. (1981). Identification et caractérisation d'un potyvirus provoquant la maladie du rabougrissement jaune du melon. Agronomie, 1:827–834. (in French).
  • Ling, K. S. and Levi, A. (2007). Sources of resistance to Zucchini yellow mosaic virus in Lagenaria siceraria germplasm. HortScience, 42(5):1124-1126.
  • Lisa, V., Boccardo, G., D’Agostino, G., Dellavalle, G. and d’Aquilio, M. (1981). Characterization of a potyvirus that causes zucchini yellow mosaic virus. Phytopathology, 71:667–672.
  • Massumi, H., Shaabanian, M., Heydarnejad, J., Hosseini Pour, A.H. and Rahimian, H., (2011). Host range and phylogenetic analysis of Iranian isolates of Zucchini yellow mosaic virus. Journal of Plant Pathology, 93:187–193.
  • Moradi, Z., Mehrvar, M. and Nazifi, E. (2019). Population genetic analysis of Zucchini yellow mosaic virus based on the CI Gene Sequence. Journal of Cell and Molecular Research, 10(2):76-89.
  • Morilipinar, E. O., Şekerci, A.D., Coşkun, Ö. F. and Gülşen, O. (2021). Genetic analysis of local pumpkin populations: genetic analysis of local pumpkin populations. International Journal of Agricultural and Natural Sciences, 14(3):264-272.
  • Nacar, Ç., Aras, V., Tekin, S. and Fidan, H. (2021). Determination of specific combining ability of ZYMV tolerant lines in summer squash. Alatarım, 20(2): 60-69. (In Turkish).
  • Pachner, M., Paris, H. S., Winkler, J. and Lelley, T. (2015). Phenotypic and marker assisted pyramiding of genes for resistance to zucchini yellow mosaic virus in oilseed pumpkin (Cucurbita pepo). Plant Breeding, 134(1):121-128.
  • Pandawani, N. P. and Widnyana, I. K. (2021). Identification of virus causes of mosaic diseases in zucchini plants in the Bali Island of Indonesia. Journal of Tekirdag Agricultural Faculty, 18(3): 411-418.
  • Papayiannis, L. C., Ioannou, N., Boubourakas, I. N., Dovas, C. I., Katis, N. I. and Falk, B. W. (2005). Incidence of viruses infecting cucurbits in Cyprus. Journal of Phytopathology, 153(9):530-535.
  • Presting, G. G., Smith, O. P. and Brown, C. R. (1995). Resistance to potato leafroll virus in potato plants transformed with the coat protein gene or with vector control constructs. Phytopathology, 85:436-442.
  • Provvidenti, R. (1991). Inheritance of resistance to the Florida strain of Zucchini Yellow Mosaic Virus in watermelon. Hort Science, 26:407-408.
  • Radwan, D. E. M., Fayez, K. A., Mahmoud, S. Y., Hamad, A. and Lu, G. (2007). Physiological and metabolic changes of Cucurbita pepo leaves in response to zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiology and Biochemistry, 45(6-7):480-489.
  • Shrestha, S., Michael, V. N., Fu, Y. and Meru, G. (2021). Genetic loci associated with resistance to Zucchini Yellow Mosaic Virus in squash. Plants, 10:1935.
  • Sidek, Z., Sako, N. and Ohshima, K. (1999). Characterization and coat protein sequence of a Malaysian isolate of Zucchini yellow mosaic virus. Journal of Plant Protection in Tropics, 12(2):92-105.
  • Simmons, H. E., Holmes, E. C., Gildow, F. E., Bothe-Goralczyk, M. A. and Stephenson, A. G. (2011). Experimental verification of seed transmission of Zucchini yellow mosaic virus. Plant Disease, 95:751–754.
  • Simmons, H. E., Dunham, J. P., Zinn, K. E., Munkvold, G. P., Holmes, E. C. and Stephenson, A. G. (2013). Zucchini yellow mosaic virus (ZYMV, Potyvirus): vertical transmission, seed infection and cryptic infections. Virus Research, 176(1-2):259-264.
  • Solmaz, I., Kaçar, Y., Sari, N. and Şimşek, Ö. (2016). Genetic diversity within Turkish watermelon [Citrullus lanatus (Thunb.) Matsumura & Nakai] accessions revealed by SSR and SRAP markers. Turkish Journal of Agriculture and Forestry, 40(3):407-419.
  • Solmaz, I. and Sarı, N. (2009). Characterization of watermelon (Citrullus lanatus) accessions collected from Turkey for morphological traits. Genetic Resources and Crop Evolution, 56(2):173-188.
  • Thies, J. A., Ariss, J. J., Kousik, C. S., Hassell, R. L. and Levi, A. (2016). Resistance to southern root-knot nematode in wild watermelon (var.). Journal of Nematology, 48(1):14-19.
  • Ünlü, E., Yetişir, H., Fidan, H. and Denli, N. (2020). Resistance sources to Zucchini Yellow Mosaic Virus in Turkish bottle gourd [Lagenaria siceraria (Molina) Standl.] Germplasm. Indian Horticulture Journal, 10(3/4):45-55.
  • USDA (2020). USDA-ARS Germplasm Resources Information Network (GRIN) http://www.ars-grin.gov/npgs . (Accessed Date: 13.06.2023).
  • Wang, H. L., Gonsalves, D., Provvidenti, R. and Zitter, T. A. (1992). Comparative biological and serological properties of four strains of Zucchini yellow mosaic virus. Plant Disease, 76 (5):530-535.
  • Wechter, W. P., McMillan, M. M., Farnham, M. W. and Levi, A. (2016). Watermelon Germplasm Lines USVL246-FR2 and USVL252-FR2 Tolerant to Fusarium oxysporum f. sp.niveum Race 2. Hortscience, 51(8):1065–1067.
  • Yanmaz, R. and Düzeltir, B. (2003). Cultivation of zucchinis (pumpkin seeds). Ekin Dergisi, 7(6):22-24. (In Turkish).
  • Yılmaz, M. A., Lecoq, H., Abak, K., Baloğlu, S. and Sarı, N. (1992). Viruses Causing Damage to Cucurbit Vegetable Species in Turkey. Turkey I. National Horticultural Congress, 13–16 October, İzmir. II, 439-442. (In Turkish).
There are 42 citations in total.

Details

Primary Language English
Subjects Plant Protection (Other)
Journal Section Articles
Authors

Akife Dalda Şekerci 0000-0001-8554-6501

Cemile Temur Çınar 0000-0002-0248-1835

Emel Ünlü 0000-0002-1047-7828

Hakan Fidan 0000-0002-0384-9486

Halit Yetişir 0000-0001-6955-9513

Early Pub Date September 12, 2024
Publication Date
Submission Date April 14, 2023
Acceptance Date August 21, 2024
Published in Issue Year 2024 Volume: 21 Issue: 4

Cite

APA Dalda Şekerci, A., Temur Çınar, C., Ünlü, E., Fidan, H., et al. (2024). Assessment of Different Cucurbit Genotypes for Resistance to Zucchini Yellow Mosaic Virus (ZYMV). Tekirdağ Ziraat Fakültesi Dergisi, 21(4), 880-891. https://doi.org/10.33462/jotaf.1283160
AMA Dalda Şekerci A, Temur Çınar C, Ünlü E, Fidan H, Yetişir H. Assessment of Different Cucurbit Genotypes for Resistance to Zucchini Yellow Mosaic Virus (ZYMV). JOTAF. September 2024;21(4):880-891. doi:10.33462/jotaf.1283160
Chicago Dalda Şekerci, Akife, Cemile Temur Çınar, Emel Ünlü, Hakan Fidan, and Halit Yetişir. “Assessment of Different Cucurbit Genotypes for Resistance to Zucchini Yellow Mosaic Virus (ZYMV)”. Tekirdağ Ziraat Fakültesi Dergisi 21, no. 4 (September 2024): 880-91. https://doi.org/10.33462/jotaf.1283160.
EndNote Dalda Şekerci A, Temur Çınar C, Ünlü E, Fidan H, Yetişir H (September 1, 2024) Assessment of Different Cucurbit Genotypes for Resistance to Zucchini Yellow Mosaic Virus (ZYMV). Tekirdağ Ziraat Fakültesi Dergisi 21 4 880–891.
IEEE A. Dalda Şekerci, C. Temur Çınar, E. Ünlü, H. Fidan, and H. Yetişir, “Assessment of Different Cucurbit Genotypes for Resistance to Zucchini Yellow Mosaic Virus (ZYMV)”, JOTAF, vol. 21, no. 4, pp. 880–891, 2024, doi: 10.33462/jotaf.1283160.
ISNAD Dalda Şekerci, Akife et al. “Assessment of Different Cucurbit Genotypes for Resistance to Zucchini Yellow Mosaic Virus (ZYMV)”. Tekirdağ Ziraat Fakültesi Dergisi 21/4 (September 2024), 880-891. https://doi.org/10.33462/jotaf.1283160.
JAMA Dalda Şekerci A, Temur Çınar C, Ünlü E, Fidan H, Yetişir H. Assessment of Different Cucurbit Genotypes for Resistance to Zucchini Yellow Mosaic Virus (ZYMV). JOTAF. 2024;21:880–891.
MLA Dalda Şekerci, Akife et al. “Assessment of Different Cucurbit Genotypes for Resistance to Zucchini Yellow Mosaic Virus (ZYMV)”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 21, no. 4, 2024, pp. 880-91, doi:10.33462/jotaf.1283160.
Vancouver Dalda Şekerci A, Temur Çınar C, Ünlü E, Fidan H, Yetişir H. Assessment of Different Cucurbit Genotypes for Resistance to Zucchini Yellow Mosaic Virus (ZYMV). JOTAF. 2024;21(4):880-91.