Research Article
BibTex RIS Cite

Ligilactobacillus salivarius KC27L'den Elde Edilen Hücresiz Süpernatant (CFSKC27L) ve Ekzopolisakkaritin (EPSKC27L) Antioksidan ve Antimikrobiyal Aktivitelerinin Belirlenmesi

Year 2024, Volume: 21 Issue: 4, 928 - 941
https://doi.org/10.33462/jotaf.1370839

Abstract

Ankara bölgesinden (Türkiye) alınan kanatlı dışkılarından biyokimyasal yöntemlerle elde edilen sonuçlara göre Lactobacillus cinsine ait 26 laktik asit bakterisi izole edilmiştir. Bu çalışma, bu izolatları ekzopolisakkarit (EPS) üretimi açısından taramıştır. Bu izolatlarda 8 mg L-1 ila 353 mg L-1 arasında değişen EPS üretimi tespit edilmiştir. Bundan sonra yapılacak çalışmalar için en yüksek EPS üreten izolat (KC27L) seçilmiştir. İzolat 16S rRNA analizi ile Ligilactobacillus salivarius olarak tanımlanmıştır. Ayrıca, yüksek EPS üretimi sergileyen KC27L suşuna (EPSKC27L) ait hücresiz süpernatantın (CFSKC27L) ve farklı konsantrasyonlardaki (0.5 mg L-1 ve 1 mg L-1) EPS'nin anti-biyofilm ve antioksidan yetenekleri belirlenmiştir. CFSKC27 ve farklı konsantrasyonlarda (0.5 ve 1 mg mL-1) EPSKC27L, Escherichia coli ATCC 11229, Enterococcus faecalis ATCC 29212 ve Staphylococcus aureus EB-1 üzerinde anti-biyofilm etkisini belirlemiştir. 1 mg mL-1 EPSKC27L'de en yüksek anti-biyofilm etkisi % 87 inhibisyon ile E. coli ATCC 11229'da tespit edilmiştir. Üç farklı yöntem ile (1.1-Difenil-2-pikrilhidrazil radikali (DPPH) giderim etkisi, Fe2+ iyon şelatlama aktivitesi ve süperoksit anyon radikal temizleme aktivitesi) antioksidan aktivite belirlenmiştir. En yüksek 1.1-Difenil-2-pikrilhidrazil radikali (DPPH) giderim etkisi, Fe2+ iyon şelatlama aktivitesi ve süperoksit anyon radikal temizleme aktivitesi 1 mg mL-1 EPSKC27L'de (sırasıyla %79.6, %24.9 ve %61.6) bulunmuştur. 1 mg mL-1 EPSKC27L'nin hem anti-biyofilm hem de antioksidan aktiviteleri postbiyotikten daha yüksek çıkmıştır. Son olarak EPSKC27L'nin kısmi saflaştırılmasının ardından moleküler karakterizasyonu yapılmıştır. EPSKC27L, molekür ağırlıkları 1.6x103 ve 6.4 x104 Da olan iki fraksiyona sahiptir. EPSKC27L’nin monosakarit bileşenleri glikoz (%53.1), fruktoz (%18.5), arabinoz (%14.6) ve mannoz (%13.8) olarak bulunmuştur. L. salivarius'tan elde edilen CFSKC27L ve EPSKC27L antioksidan ve anti-biyofilm ajanları olabilir.

Supporting Institution

This work is supported by the Gazi University Scientific Research Projects Department Research Project (Project No: 05/2017-08)

Project Number

05/2017-08

References

  • Abarquero, D., Renes, E., Fresno, J. M. and Tornadijo, M. E. (2021). Study of exopolysaccharides from lactic acid bacteria and their industrial applications: A review. International Journal of Food Science & Technology, 57 (1): 16-26. https://doi.org/10.1111/ijfs.15227
  • Aguilar-Toalá, J. E., Garcia-Varela, R., Garcia, H. S., Mata-Haro, V., González-Córdovaa, A. F. and Hernández-Mendozaa, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology 75, 105-114. https://doi.org/10.1016/j.tifs.2018.03.009
  • Ai, L., Guo, Q., Ding, H., Guo, B., Chen, W. and Cui, S. W. (2016). Structure characterization of exopolysaccharides from Lactobacillus casei LC2W from skim milk. Food Hydrocolloids, 56: 134-143.
  • Albaş, M. G., Gürbüz, B., Bölük, E., Sözeri Atik, D., Velioğlu, H. M. and Palabıyık İ. (2022). The effect of lactic acid based propolis addition on the shelf life of fresh strawberry juice. Journal of Tekirdag Agricultural Faculty, 19(4): 788-797.
  • Arıcı, M. (2005). The Effect of patulin on growth of some lactic acid bacteria. Journal of Tekirdag Agricultural Faculty, 2(1): 36-43.
  • Ayyash, M., Abu-Jdayil, B., Hamed, F. and Shaker, R. (2018). Rheological, the textural, microstructural, and sensory impact of exopolysaccharide-producing Lactobacillus plantarum isolated from camel milk on low-fat akawi cheese. LWT- Food Science and Technology 87: 423-431. https://doi.org/10.1016/j.lwt.2017.09.023
  • Barros, C. P., Guimarães, T., Esmerino, E. A., Duarte, M. C. K. H., Silva, M. C., Silva, R., Ferreira, B. M., Sant’Ana, A. S., Freita, M. Q. and Cruz, A. G. (2020). Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Current Opinion in Food Science 32: 1-8. https://doi.org/10.1016/j.cofs.2019.12.003
  • Bikric, S., Aslim, B., Dincer, I., Yuksekdag, Z., Ulusoy, S. and Yavuz, S. (2022). Characterization of exopolysaccharides (EPSs) obtained from Ligilactobacillus salivarius strains and ınvestigation at the prebiotic potential as an alternative to plant prebiotics at poultry. Probiotics and Antimicrobial Proteins, 14: 49-59. https://doi.org/10.1007/s12602-021-09790-8
  • Boymirzaev, A. S., Shomurotov, S. and Turaev, A. S. (2013). Secondary effects in aqueous size-exclusion chromatography of polysaccharides. Chemistry of Plant Raw Materials 2, 51-55. https://doi.org/10.14258/jcprm.1302051
  • Campana, R., Federici, S., Ciandrini, E., Manti, A. and Baffone, W. (2019). Lactobacillus spp. inhibit the growth of Cronobacter sakazakii ATCC 29544 by altering its membrane integrity. Journal of Food Science and Technology 56, 3962-3967. https://doi.org/10.1007/s13197-019-03928-x
  • Cano, J. V. D., Argente, M. J. and García, M. L. (2021). Effect of postbiotic based on lactic acid bacteria on semen quality and health of male rabbits. Journal of Animal Science 11, 1007. https://doi.org/10.3390/ani11041007
  • Chaieb, K., Kouidhi, B., Jrah, H., Mahdouani, K. and Bakhrouf, A. (2011). Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complementary Medicine and Therapies, 11: 29 https://doi.org/10.1186/1472-6882-11-29
  • Choi, S., Ko, S. H., Lee, M. E., Kim, H. M., Yang, J. E., Jeong, S. G., Lee, K. H., Chang, J. Y., Kim, J. C. and Park, H.W. (2021). Production, characterization, and antioxidant activities of an exopolysaccharide extracted from spent media wastewater after Leuconostoc mesenteroides WiKim32 fermentation. ACS Omega, 6: 8171-8178. https://doi.org/10.1021/acsomega.0c06095
  • Cicenia, A., Scirocco, A., Carabotti, M., Pallotta, L., Marignani, M. and Severi, C. (2014). Postbiotic activities of lactobacilli-derived factors. Journal of Clinical Gastroenterology, 48: 18-22. https://doi.org/10.1097/MCG.0000000000000231
  • dos Santos, H. R. M., Argolo, C. S., Argolo-Filho, R. C. and Loguercio, L. L. A. (2019). 16S rDNA PCR based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiology 19, 74. https://doi.org/10.1186/s12866-019-1446-2
  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 350-356. https://doi.org/10.1021/ac60111a017
  • Hajam, Y. A., Rani, R., Ganie, S. Y., Sheikh, T. A., Javaid, D., Qadri, S. S., Pramodh, S., Alsulimani, A., Alkhanani, M. F., Harakeh, S., Hussain, A., Haque, S. and Reshi, M. S. (2022). Oxidative stress in human pathology and aging: molecular mechanism and research perspectives. Cells, 11(3): 552. https://doi.org/10.3390/cells11030552
  • Hossain, M. I., Mizan, M. F. R., Roy, P. K., Nahar, S., Toushik, S. H., Ashrafudoulla, Md., Jahid, I. K., Lee, J. and Ha, S. D. (2021). Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2. Food Research International 148, 110595. https://doi.org/10.1016/j.foodres.2021.110595
  • Ismail, B. and Nampoothiri, K. M. (2013). Exposition of antitumour activity of a chemically characterized exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510. Cellular and Molecular Biology, 68: 1041-1047. https://doi.org/10.2478/s11756-013-0275-2
  • Izuddin, W. I., Humam, A. M., Loh, T. C., Foo, H. L. and Samsudin, A. A. (2020). Dietary postbiotic Lactobacillus plantarum improves serum and ruminal antioxidant activity and upregulates hepatic antioxidant enzymes and ruminal barrier function in post-weaning lambs. Antioxidants, 9(3): 250. https://doi.org/10.3390/antiox9030250
  • Jamwal, A., Sharma, K., Chauhan, R., Bansal, S. and Goel, G. (2019). Evaluation of commercial probiotic lactic cultures against biofilm formation by Cronobacter sakazakii. Intestinal Research, 17: 192-201. https://doi.org/10.5217/ir.2018.00106
  • Ke, A., Parreira, V. R., Goodridge, L. and Farber, J. M. (2021). Current and future perspectives on the role of probiotics, prebiotics, and synbiotics in controlling pathogenic Cronobacter spp. in Infants. Frontiers in Microbiology 755083. https://doi.org/10.3389/fmicb.2021.755083
  • Kim, Y., Oh, S. and Kim, S. H. (2009). Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochemical and Biophysical Research Communications, 379: 324-329. https://doi.org/10.1016/j.bbrc.2008.12.053
  • Ledezma, O. E. V., Méndez, H. I. P., Manjarrez, L. Á. M., Caño, E., Alvarez, N. M. and López-Luna, A. (2016). Characterization of extracellular polymeric substances (EPS) produced by marine Micromonospora sp. Journal of Chemical and Pharmaceutical Research, 8: 442-451.
  • Li, W., Ji, J., Chen, X., Jiang, M., Rui, X. and Dong, M. (2014). Structural elucidation and antioxidantactivities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydrate Polymers, 102: 351-359. https://doi.org/10.1016/j.carbpol.2013.11.053
  • Li, D., Li, J., Zhao, F., Wang, G., Qin, Q. and Hao, Y. (2016). The influence of fermentation condition on production and molecular mass of EPS produced by Streptococcus thermophilus 05-34 in milk-based medium. Food Chemistry, 197: 1367-372. https://doi.org/10.1016/j.foodchem.2015.10.129
  • Li, W., Mutuvulla, M., Chen, X., Jiang, M. and Dong, M. (2021). Isolation and identification of high viscosity-producing lactic acid bacteria from a traditional fermented milk in Xinjiang and its role in fermentation process. European Food Research and Technology, 235: 497-505. https://doi.org/10.1007/s00217-012-1779-7
  • Loh, T., Chong, S., Foo, H. and Law, F. (2009). Effects on growth performance, faecal microflora, and plasma cholesterol after supplementation of spray-dried metabolite to postweaning rats. Czech Journal of Animal Science, 54: 10-16.
  • Mercan, E., İspirli, H., Sert, D., Yılmaz, M. T. and Dertli, E. (2015). Impact of exopolysaccharide production on functional properties of some Lactobacillus salivarius strains. Archives of Microbiology 197, 1041-1049. https://doi.org/10.1007/s00203-015-1141-0
  • Min, W. H., Fang, X. B., Wu, T., Fang, L., Liu, C. L. and Wang, J. (2019). Characterization and antioxidant activity of an acidic exopolysaccharide from Lactobacillus plantarum JLAU103. Journal of Bioscience and Bioengineering, 127: 758-766. https://doi.org/10.1016/j.jbiosc.2018.12.004
  • Moradi, M., Molaei, R. and Guimaraes, J. T. (2021). A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme and Microbial Technology, 143: 109722. https://doi.org/10.1016/j.enzmictec.2020.109722
  • Nataraj, B. H. and Mallappa, R. H. (2020). Antibiotic resistance crisis: An update on antagonistic interactions between probiotics and methicillin‑resistant Staphylococcus aureus (MRSA). Current Microbiology, 78(6): 2194-2211. https://doi.org/10.1007/s00284-021-02442-8
  • Ohshima, T., Kawai, T. and Maeda, N. (2019). Bacterial cell-free probiotics using effective substances produced by probiotic bacteria, for application in the oral cavity, prebiotics and probiotics-potential benefits in nutrition and health. Elena Franco-Robles and Joel Ramírez-Emiliano, IntechOpen. https://doi.org/10.5772/intechopen.89008
  • Piqué, N., Berlanga, M. and Miñana-Galbis D. (2019). Health benefits of heat-killed (Tyndallized) probiotics: An overview. International Journal of Molecular Sciences, 20: 2534. https://doi.org/10.3390/ijms20102534
  • Prete, R., Alam, M. K., Perpetuini, G., Perla, C., Pittia, P. and Corsetti, A. (2021). Lactic acid bacteria exopolysaccharides producers: A sustainable tool for functional foods. Foods, 10(7): 1653. https://doi.org/10.3390/foods10071653
  • Pujato, S. A., Del, L., Quiberoni, A., Candioti, M. C., Reinheimer, J. A. and Guglielmotti, D. M. (2014). Leuconostoc citreum MB1as biocontrol agent of Listeria monocytogenes in milk. Journal of Dairy Research, 81 (2): 137-145. https://doi.org/10.1017/S002202991300068X
  • Qiao, D., Ke, C., Hu, B., Luo, J., Ye, H., Sun, Y., Yan, X. and Zeng, X. (2009). Antioxidant activities of polysaccharides from Hyriopsis cumingii. Carbohydrate Polymers, 78: 199-204. https://doi.org/10.1016/j.carbpol.2009.03.018
  • Raftis, E. J., Salvetti, E., Torriani, S., Felis, G. E. and O’Toole, P. W. (2011). Genomic diversity of Lactobacillus salivarius. Applied and Environmental Microbiology, 77: 954-965. https://doi.org/10.1128/AEM.01687-10
  • Rajoka, M. S. R., Mehwish, H. M., Hayat, H. F., Hussain, N., Sarwar, S., Aslam, H., Nadeem, A. and Shi, J. (2019). Characterization, the antioxidant, and antimicrobial activity of exopolysaccharide isolated from poultry origin Lactobacilli. Probiotics and Antimicrobial Proteins, 11(4): 1132-1142. https://doi.org/10.1007/s12602-018-9494-8
  • Rani, R. P., Anandharaj, M. and Ravindran, A. D. (2018). Characterization of a novel exopolysaccharide produced by Lactobacillus gasseri FR4 and demonstration of its in vitro biological properties. International Journal of Biological Macromolecules, 109: 1772-783. https://doi.org/10.1016/j.ijbiomac.2017.11.062
  • Ren, W., Xia, Y., Wang, G., Zhang, H., Zhu, S. and Ai, L. (2016). Bioactive exopolysaccharides from a S. thermophilus strain: Screening, purification, and characterization. International Journal of Biological Macromolecules, 86: 402-407. https://doi.org/10.1016/j.ijbiomac.2016.01.085
  • Rendueles, O., Kaplan, J. B. and Ghigo, J. M. (2013). Antibiofilm polysaccharides. Environmental Microbiology, 15(2): 334-346. https://doi.org/10.1111/j.1462-2920.2012.02810.x
  • Salminen, S., Collado, M.C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M. M., Sanders, E. M., Shamir, R., Swann, J. R., Szajewska, H. and Vinderol, G. (2021). The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18(9): 649-667. https://doi.org/10.1038/s41575-021-00440-6
  • Sarikaya, H., Aslim, B. and Yuksekdag, Z. N. (2017). Assessment of anti-biofilm activity and bifidogenic growth stimulator (BGS) effect of lyophilized exopolysaccharides (L-EPSs) from Lactobacilli strains. International Journal of Food Properties, 20: 362-371. https://doi.org/10.1080/10942912.2016.1160923
  • Sengül, N., Isik, S., Aslim, B., Ucar, G. and Demirbag, A. E. (2011). The effect of exopolysaccharide-producing probiotic strains on gut oxidative damage in experimental colitis. Digestive Diseases and Sciences, 56: 707-714. https://doi.org/10.1007/s10620-010-1362-7
  • Sevin, S., Karaca, B., Haliscelik, O., Kibar, H., Omeroglu, E. and Kiran, F. (2021). Postbiotics secreted by Lactobacillus sakei EIR/CM-1 isolated from cow milk microbiota, display antibacterial and antibiofilm activity against ruminant mastitis-causing pathogens. Italian Journal of Animal Science, 20(1): 1302-1316. https://doi.org/10.1080/1828051X.2021.1958077
  • Sharma, V., Harjai, K. and Shukla, G. (2018). Effect of bacteriocin and exopolysaccharides isolated from probiotic on P. aeruginosa PAO1 biofilm. Folia Microbiologica, 63: 181-190. https://doi.org/10.1007/s12223-017-0545-4
  • Shu, Z., Yang, Y., Ding, Z., Wang, W., Zhong, R., Xia, T., Li, W., Kuang, H., Wang, Y. and Sun, X. (2020). Structural characterization and cardioprotective activity of a novel polysaccharide from Fructus aurantia. International Journal of Biological Macromolecules, 144: 847-856. https://doi.org/10.1016/j.ijbiomac.2019.09.162
  • Takakuwa, H., Yamazaki, T., Souquere, S., Adachi, S., Yoshino, H., Fujiwara, N., Yamamoto, T., Natsume, T., Nakagawa, S., Pierron, G. and Hirose, T. (2023). Shell protein composition specified by the lncRNA NEAT1 domains dictates the formation of paraspeckles as distinct membraneless organelles. Nature Cell Biology 25(11): 1664-1675. https://doi.org/10.1038/s41556-023-01254-1
  • Trabelsi, I., Ktari, N., Ben Slima, S., Triki, M., Bardaa, S., Mnif, H. and Ben Salah, R. (2017). Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp. Ca6. International Journal of Biological Macromolecules, 103: 194-201. https://doi.org/10.1016/j.ijbiomac.2017.05.017
  • Tukenmez, U., Aktas, B., Aslim, B. and Yavuz, S. (2019). The relationship between the structural characteristics of lactobacilli-EPS and its ability to induce apoptosis in colon cancer cells in vitro. Scientific Reports, 9: 8268. https://doi.org/10.1038/s41598-019-44753-8
  • Valle, J., Da Re S., Henry, N., Fontaine, T., Balestrino, D., Latour-Lambert, P. and Ghigo, J. (2006). Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. The Proceedings of the National Academy of Sciences (PNAS), 103(33): 12558-12563. https://doi.org/10.1073/pnas.0605399103
  • Wang, Y., Li, C., Liu, P., Ahmed, Z., Xiao, P. and Bai, X. (2010). Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydrate Polymers, 82: 895-903. https://doi.org/10.1016/j.carbpol.2010.06.013
  • Wang, J., Zhao, X., Yang, Y., Zhao, A. and Yang, Z. (2015). Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules, 74: 119-126. https://doi.org/10.1016/j.ijbiomac.2014.12.006
  • Wang, K., Niu, M., Song, D., Song, X., Zhao, J., Wu, Y., Lu, B. and Niu, G. (2020). Preparation, partial characterization and biological activity of exopolysaccharides produced from Lactobacillus fermentum S1. Journal of Bioscience and Bioengineering, 129(2): 206-214. https://doi.org/10.1016/j.jbiosc.2019.07.009
  • Wang, J., Zhang, J., Guo, H., Cheng, Q., Abbas, Z., Tong, Y., Yang, T., Zhou, Y., Zhang, H., Wei, X., Si, D. and Zhang, R. (2023). Optimization of exopolysaccharide produced by Lactobacillus plantarum 301 and its antioxidant and anti-inflammatory activities. Foods, 12(13): 2481. https://doi.org/10.3390/foods12132481
  • Xu, R., Ma, S., Wang, Y., Liu, L. and Li, P. (2010). Screening, identification and statistic optimization of a novel exopolysaccharide producing Lactobacillus paracasei HCT. African Journal of Microbiology Research, 4(9): 783-795.
  • Yildiz, B. M., Yuzbasioglu, D., Yuksekdag, Z., Cetin, D., Unal, F. and Suludere, Z. (2023). In vitro genotoxic and antigenotoxic effects of an exopolysaccharide isolated from Lactobacillus salivarius KC27L. Toxicology In Vitro, 86: 105507. https://doi.org/10.1016/j.tiv.2022.105507
  • Yuksekdag, Z. N., Sahin, N. and Aslim, B. (2014). In vitro evaluation of the suitability potential probiotic of lactobacilli isolates from the gastrointestinal tract of chicken. European Food Research and Technology, 239 (2): 313-320. https://doi.org/10.1007/s00217-014-2224-x
  • Zhang, Z., Liu, Z., Tao, X. and Wei, H. (2016). Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities. Carbohydrate Polymers, 153: 25-33. https://doi.org/10.1016/j.carbpol.2016.07.084
  • Zhao, B., Wang, X., Liu, H., Lv, C. and Lu, J. (2020). Structural characterization and antioxidant activity of oligosaccharides from Panax ginseng C.A Meyer. International Journal of Biological Macromolecules, 150: 737-745. https://doi.org/10.1016/j.ijbiomac.2020.02.016
  • Zhou, Y., Cui, Y. and Qu, X. (2019). Exopolysaccharides of lactic acid bacteria: Structure, bioactivity, and associations: A review. Carbohydrate Polymers, 207: 317-332. https://doi.org/10.1016/j.carbpol.2018.11.093
  • Żółkiewicz, J., Marzec, A., Ruszczyński, M. and Feleszko, W. (2020). Postbiotics-a step beyond pre- and probiotics. Nutrients, 12(8): 2189. https://doi.org/10.3390/nu12082189

Determination of Antioxidant and Antimicrobial Activities of Cell-Free Supernatant (CFSKC27L) and Exopolysaccharide (EPSKC27L) obtained from Ligilactobacillus salivarius KC27L

Year 2024, Volume: 21 Issue: 4, 928 - 941
https://doi.org/10.33462/jotaf.1370839

Abstract

Twenty-six lactic acid bacteria were obtained from poultry feces sampled located in the Ankara area (Türkiye) and belong to the Lactobacillus genus according to the results obtained by biochemical methods. This study screened these isolates for exopolysaccharides (EPS) production. EPS production was detected in these isolates, varying from 8 mg L-1 to 353 mg L-1. The highest EPS-producing isolate (KC27L) was selected for further studies. The isolate was identified as Ligilactobacillus salivarius by 16S rRNA analysis. Furthermore, the anti-biofilm and antioxidant abilities of the cell-free supernatant (CFSKC27L) and different concentrations (0.5 mg L-1 and 1 mg L-1) of EPS belonging to the KC27L strain (EPSKC27L) that exhibited high EPS production were determined. CFSKC27 and different concentrations (0.5 mg L-1 and 1 mg mL-1) of EPSKC27L determined the anti-biofilm impact on Escherichia coli ATCC 11229, Enterococcus faecalis ATCC 29212, and Staphylococcus aureus EB-1. The highest anti-biofilm effect in 1 mg mL-1 EPSKC27L was detected at E. coli ATCC 11229 with 87 % inhibition. Three different methods (1.1-Diphenyl-2-picrylhydrazyl radical (DPPH) removal impact, Fe2+ ion chelating and superoxide anion radical scavenging activity) designated antioxidant activity. The highest 1.1-Diphenyl-2-picrylhydrazyl radical (DPPH) removal impact, Fe2+ ion chelating, and superoxide anion radical scavenging activity were found in 1 mg mL-1 EPSKC27L (79.6%, 24.9%, and 61.6%, respectively). Both anti-biofilm and antioxidant activities of 1 mg mL-1 EPSKC27L were higher than postbiotic. Finally, its molecular characterization was done following the partial purification of the EPSKC27L. The EPSKC27L has two fractions with molecular weights of 1.6x103 and 6.4 x104 Da. Monosaccharide components of EPSKC27L were found to be glucose (53.1%), fructose (18.5%), arabinose (14.6%) and mannose (13.8%). CFSKC27L and EPSKC27L obtained from L. salivarius can be antioxidants and anti-biofilm agents.

Supporting Institution

This work is supported by the Gazi University Scientific Research Projects Department Research Project (Project No: 05/2017-08)

Project Number

05/2017-08

Thanks

The authors would like to thank Gazi University Scientific Research Projects Department for funding the 05/2017-08 coded project including this study

References

  • Abarquero, D., Renes, E., Fresno, J. M. and Tornadijo, M. E. (2021). Study of exopolysaccharides from lactic acid bacteria and their industrial applications: A review. International Journal of Food Science & Technology, 57 (1): 16-26. https://doi.org/10.1111/ijfs.15227
  • Aguilar-Toalá, J. E., Garcia-Varela, R., Garcia, H. S., Mata-Haro, V., González-Córdovaa, A. F. and Hernández-Mendozaa, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology 75, 105-114. https://doi.org/10.1016/j.tifs.2018.03.009
  • Ai, L., Guo, Q., Ding, H., Guo, B., Chen, W. and Cui, S. W. (2016). Structure characterization of exopolysaccharides from Lactobacillus casei LC2W from skim milk. Food Hydrocolloids, 56: 134-143.
  • Albaş, M. G., Gürbüz, B., Bölük, E., Sözeri Atik, D., Velioğlu, H. M. and Palabıyık İ. (2022). The effect of lactic acid based propolis addition on the shelf life of fresh strawberry juice. Journal of Tekirdag Agricultural Faculty, 19(4): 788-797.
  • Arıcı, M. (2005). The Effect of patulin on growth of some lactic acid bacteria. Journal of Tekirdag Agricultural Faculty, 2(1): 36-43.
  • Ayyash, M., Abu-Jdayil, B., Hamed, F. and Shaker, R. (2018). Rheological, the textural, microstructural, and sensory impact of exopolysaccharide-producing Lactobacillus plantarum isolated from camel milk on low-fat akawi cheese. LWT- Food Science and Technology 87: 423-431. https://doi.org/10.1016/j.lwt.2017.09.023
  • Barros, C. P., Guimarães, T., Esmerino, E. A., Duarte, M. C. K. H., Silva, M. C., Silva, R., Ferreira, B. M., Sant’Ana, A. S., Freita, M. Q. and Cruz, A. G. (2020). Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Current Opinion in Food Science 32: 1-8. https://doi.org/10.1016/j.cofs.2019.12.003
  • Bikric, S., Aslim, B., Dincer, I., Yuksekdag, Z., Ulusoy, S. and Yavuz, S. (2022). Characterization of exopolysaccharides (EPSs) obtained from Ligilactobacillus salivarius strains and ınvestigation at the prebiotic potential as an alternative to plant prebiotics at poultry. Probiotics and Antimicrobial Proteins, 14: 49-59. https://doi.org/10.1007/s12602-021-09790-8
  • Boymirzaev, A. S., Shomurotov, S. and Turaev, A. S. (2013). Secondary effects in aqueous size-exclusion chromatography of polysaccharides. Chemistry of Plant Raw Materials 2, 51-55. https://doi.org/10.14258/jcprm.1302051
  • Campana, R., Federici, S., Ciandrini, E., Manti, A. and Baffone, W. (2019). Lactobacillus spp. inhibit the growth of Cronobacter sakazakii ATCC 29544 by altering its membrane integrity. Journal of Food Science and Technology 56, 3962-3967. https://doi.org/10.1007/s13197-019-03928-x
  • Cano, J. V. D., Argente, M. J. and García, M. L. (2021). Effect of postbiotic based on lactic acid bacteria on semen quality and health of male rabbits. Journal of Animal Science 11, 1007. https://doi.org/10.3390/ani11041007
  • Chaieb, K., Kouidhi, B., Jrah, H., Mahdouani, K. and Bakhrouf, A. (2011). Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complementary Medicine and Therapies, 11: 29 https://doi.org/10.1186/1472-6882-11-29
  • Choi, S., Ko, S. H., Lee, M. E., Kim, H. M., Yang, J. E., Jeong, S. G., Lee, K. H., Chang, J. Y., Kim, J. C. and Park, H.W. (2021). Production, characterization, and antioxidant activities of an exopolysaccharide extracted from spent media wastewater after Leuconostoc mesenteroides WiKim32 fermentation. ACS Omega, 6: 8171-8178. https://doi.org/10.1021/acsomega.0c06095
  • Cicenia, A., Scirocco, A., Carabotti, M., Pallotta, L., Marignani, M. and Severi, C. (2014). Postbiotic activities of lactobacilli-derived factors. Journal of Clinical Gastroenterology, 48: 18-22. https://doi.org/10.1097/MCG.0000000000000231
  • dos Santos, H. R. M., Argolo, C. S., Argolo-Filho, R. C. and Loguercio, L. L. A. (2019). 16S rDNA PCR based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiology 19, 74. https://doi.org/10.1186/s12866-019-1446-2
  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 350-356. https://doi.org/10.1021/ac60111a017
  • Hajam, Y. A., Rani, R., Ganie, S. Y., Sheikh, T. A., Javaid, D., Qadri, S. S., Pramodh, S., Alsulimani, A., Alkhanani, M. F., Harakeh, S., Hussain, A., Haque, S. and Reshi, M. S. (2022). Oxidative stress in human pathology and aging: molecular mechanism and research perspectives. Cells, 11(3): 552. https://doi.org/10.3390/cells11030552
  • Hossain, M. I., Mizan, M. F. R., Roy, P. K., Nahar, S., Toushik, S. H., Ashrafudoulla, Md., Jahid, I. K., Lee, J. and Ha, S. D. (2021). Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2. Food Research International 148, 110595. https://doi.org/10.1016/j.foodres.2021.110595
  • Ismail, B. and Nampoothiri, K. M. (2013). Exposition of antitumour activity of a chemically characterized exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510. Cellular and Molecular Biology, 68: 1041-1047. https://doi.org/10.2478/s11756-013-0275-2
  • Izuddin, W. I., Humam, A. M., Loh, T. C., Foo, H. L. and Samsudin, A. A. (2020). Dietary postbiotic Lactobacillus plantarum improves serum and ruminal antioxidant activity and upregulates hepatic antioxidant enzymes and ruminal barrier function in post-weaning lambs. Antioxidants, 9(3): 250. https://doi.org/10.3390/antiox9030250
  • Jamwal, A., Sharma, K., Chauhan, R., Bansal, S. and Goel, G. (2019). Evaluation of commercial probiotic lactic cultures against biofilm formation by Cronobacter sakazakii. Intestinal Research, 17: 192-201. https://doi.org/10.5217/ir.2018.00106
  • Ke, A., Parreira, V. R., Goodridge, L. and Farber, J. M. (2021). Current and future perspectives on the role of probiotics, prebiotics, and synbiotics in controlling pathogenic Cronobacter spp. in Infants. Frontiers in Microbiology 755083. https://doi.org/10.3389/fmicb.2021.755083
  • Kim, Y., Oh, S. and Kim, S. H. (2009). Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochemical and Biophysical Research Communications, 379: 324-329. https://doi.org/10.1016/j.bbrc.2008.12.053
  • Ledezma, O. E. V., Méndez, H. I. P., Manjarrez, L. Á. M., Caño, E., Alvarez, N. M. and López-Luna, A. (2016). Characterization of extracellular polymeric substances (EPS) produced by marine Micromonospora sp. Journal of Chemical and Pharmaceutical Research, 8: 442-451.
  • Li, W., Ji, J., Chen, X., Jiang, M., Rui, X. and Dong, M. (2014). Structural elucidation and antioxidantactivities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydrate Polymers, 102: 351-359. https://doi.org/10.1016/j.carbpol.2013.11.053
  • Li, D., Li, J., Zhao, F., Wang, G., Qin, Q. and Hao, Y. (2016). The influence of fermentation condition on production and molecular mass of EPS produced by Streptococcus thermophilus 05-34 in milk-based medium. Food Chemistry, 197: 1367-372. https://doi.org/10.1016/j.foodchem.2015.10.129
  • Li, W., Mutuvulla, M., Chen, X., Jiang, M. and Dong, M. (2021). Isolation and identification of high viscosity-producing lactic acid bacteria from a traditional fermented milk in Xinjiang and its role in fermentation process. European Food Research and Technology, 235: 497-505. https://doi.org/10.1007/s00217-012-1779-7
  • Loh, T., Chong, S., Foo, H. and Law, F. (2009). Effects on growth performance, faecal microflora, and plasma cholesterol after supplementation of spray-dried metabolite to postweaning rats. Czech Journal of Animal Science, 54: 10-16.
  • Mercan, E., İspirli, H., Sert, D., Yılmaz, M. T. and Dertli, E. (2015). Impact of exopolysaccharide production on functional properties of some Lactobacillus salivarius strains. Archives of Microbiology 197, 1041-1049. https://doi.org/10.1007/s00203-015-1141-0
  • Min, W. H., Fang, X. B., Wu, T., Fang, L., Liu, C. L. and Wang, J. (2019). Characterization and antioxidant activity of an acidic exopolysaccharide from Lactobacillus plantarum JLAU103. Journal of Bioscience and Bioengineering, 127: 758-766. https://doi.org/10.1016/j.jbiosc.2018.12.004
  • Moradi, M., Molaei, R. and Guimaraes, J. T. (2021). A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme and Microbial Technology, 143: 109722. https://doi.org/10.1016/j.enzmictec.2020.109722
  • Nataraj, B. H. and Mallappa, R. H. (2020). Antibiotic resistance crisis: An update on antagonistic interactions between probiotics and methicillin‑resistant Staphylococcus aureus (MRSA). Current Microbiology, 78(6): 2194-2211. https://doi.org/10.1007/s00284-021-02442-8
  • Ohshima, T., Kawai, T. and Maeda, N. (2019). Bacterial cell-free probiotics using effective substances produced by probiotic bacteria, for application in the oral cavity, prebiotics and probiotics-potential benefits in nutrition and health. Elena Franco-Robles and Joel Ramírez-Emiliano, IntechOpen. https://doi.org/10.5772/intechopen.89008
  • Piqué, N., Berlanga, M. and Miñana-Galbis D. (2019). Health benefits of heat-killed (Tyndallized) probiotics: An overview. International Journal of Molecular Sciences, 20: 2534. https://doi.org/10.3390/ijms20102534
  • Prete, R., Alam, M. K., Perpetuini, G., Perla, C., Pittia, P. and Corsetti, A. (2021). Lactic acid bacteria exopolysaccharides producers: A sustainable tool for functional foods. Foods, 10(7): 1653. https://doi.org/10.3390/foods10071653
  • Pujato, S. A., Del, L., Quiberoni, A., Candioti, M. C., Reinheimer, J. A. and Guglielmotti, D. M. (2014). Leuconostoc citreum MB1as biocontrol agent of Listeria monocytogenes in milk. Journal of Dairy Research, 81 (2): 137-145. https://doi.org/10.1017/S002202991300068X
  • Qiao, D., Ke, C., Hu, B., Luo, J., Ye, H., Sun, Y., Yan, X. and Zeng, X. (2009). Antioxidant activities of polysaccharides from Hyriopsis cumingii. Carbohydrate Polymers, 78: 199-204. https://doi.org/10.1016/j.carbpol.2009.03.018
  • Raftis, E. J., Salvetti, E., Torriani, S., Felis, G. E. and O’Toole, P. W. (2011). Genomic diversity of Lactobacillus salivarius. Applied and Environmental Microbiology, 77: 954-965. https://doi.org/10.1128/AEM.01687-10
  • Rajoka, M. S. R., Mehwish, H. M., Hayat, H. F., Hussain, N., Sarwar, S., Aslam, H., Nadeem, A. and Shi, J. (2019). Characterization, the antioxidant, and antimicrobial activity of exopolysaccharide isolated from poultry origin Lactobacilli. Probiotics and Antimicrobial Proteins, 11(4): 1132-1142. https://doi.org/10.1007/s12602-018-9494-8
  • Rani, R. P., Anandharaj, M. and Ravindran, A. D. (2018). Characterization of a novel exopolysaccharide produced by Lactobacillus gasseri FR4 and demonstration of its in vitro biological properties. International Journal of Biological Macromolecules, 109: 1772-783. https://doi.org/10.1016/j.ijbiomac.2017.11.062
  • Ren, W., Xia, Y., Wang, G., Zhang, H., Zhu, S. and Ai, L. (2016). Bioactive exopolysaccharides from a S. thermophilus strain: Screening, purification, and characterization. International Journal of Biological Macromolecules, 86: 402-407. https://doi.org/10.1016/j.ijbiomac.2016.01.085
  • Rendueles, O., Kaplan, J. B. and Ghigo, J. M. (2013). Antibiofilm polysaccharides. Environmental Microbiology, 15(2): 334-346. https://doi.org/10.1111/j.1462-2920.2012.02810.x
  • Salminen, S., Collado, M.C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M. M., Sanders, E. M., Shamir, R., Swann, J. R., Szajewska, H. and Vinderol, G. (2021). The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18(9): 649-667. https://doi.org/10.1038/s41575-021-00440-6
  • Sarikaya, H., Aslim, B. and Yuksekdag, Z. N. (2017). Assessment of anti-biofilm activity and bifidogenic growth stimulator (BGS) effect of lyophilized exopolysaccharides (L-EPSs) from Lactobacilli strains. International Journal of Food Properties, 20: 362-371. https://doi.org/10.1080/10942912.2016.1160923
  • Sengül, N., Isik, S., Aslim, B., Ucar, G. and Demirbag, A. E. (2011). The effect of exopolysaccharide-producing probiotic strains on gut oxidative damage in experimental colitis. Digestive Diseases and Sciences, 56: 707-714. https://doi.org/10.1007/s10620-010-1362-7
  • Sevin, S., Karaca, B., Haliscelik, O., Kibar, H., Omeroglu, E. and Kiran, F. (2021). Postbiotics secreted by Lactobacillus sakei EIR/CM-1 isolated from cow milk microbiota, display antibacterial and antibiofilm activity against ruminant mastitis-causing pathogens. Italian Journal of Animal Science, 20(1): 1302-1316. https://doi.org/10.1080/1828051X.2021.1958077
  • Sharma, V., Harjai, K. and Shukla, G. (2018). Effect of bacteriocin and exopolysaccharides isolated from probiotic on P. aeruginosa PAO1 biofilm. Folia Microbiologica, 63: 181-190. https://doi.org/10.1007/s12223-017-0545-4
  • Shu, Z., Yang, Y., Ding, Z., Wang, W., Zhong, R., Xia, T., Li, W., Kuang, H., Wang, Y. and Sun, X. (2020). Structural characterization and cardioprotective activity of a novel polysaccharide from Fructus aurantia. International Journal of Biological Macromolecules, 144: 847-856. https://doi.org/10.1016/j.ijbiomac.2019.09.162
  • Takakuwa, H., Yamazaki, T., Souquere, S., Adachi, S., Yoshino, H., Fujiwara, N., Yamamoto, T., Natsume, T., Nakagawa, S., Pierron, G. and Hirose, T. (2023). Shell protein composition specified by the lncRNA NEAT1 domains dictates the formation of paraspeckles as distinct membraneless organelles. Nature Cell Biology 25(11): 1664-1675. https://doi.org/10.1038/s41556-023-01254-1
  • Trabelsi, I., Ktari, N., Ben Slima, S., Triki, M., Bardaa, S., Mnif, H. and Ben Salah, R. (2017). Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp. Ca6. International Journal of Biological Macromolecules, 103: 194-201. https://doi.org/10.1016/j.ijbiomac.2017.05.017
  • Tukenmez, U., Aktas, B., Aslim, B. and Yavuz, S. (2019). The relationship between the structural characteristics of lactobacilli-EPS and its ability to induce apoptosis in colon cancer cells in vitro. Scientific Reports, 9: 8268. https://doi.org/10.1038/s41598-019-44753-8
  • Valle, J., Da Re S., Henry, N., Fontaine, T., Balestrino, D., Latour-Lambert, P. and Ghigo, J. (2006). Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. The Proceedings of the National Academy of Sciences (PNAS), 103(33): 12558-12563. https://doi.org/10.1073/pnas.0605399103
  • Wang, Y., Li, C., Liu, P., Ahmed, Z., Xiao, P. and Bai, X. (2010). Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydrate Polymers, 82: 895-903. https://doi.org/10.1016/j.carbpol.2010.06.013
  • Wang, J., Zhao, X., Yang, Y., Zhao, A. and Yang, Z. (2015). Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules, 74: 119-126. https://doi.org/10.1016/j.ijbiomac.2014.12.006
  • Wang, K., Niu, M., Song, D., Song, X., Zhao, J., Wu, Y., Lu, B. and Niu, G. (2020). Preparation, partial characterization and biological activity of exopolysaccharides produced from Lactobacillus fermentum S1. Journal of Bioscience and Bioengineering, 129(2): 206-214. https://doi.org/10.1016/j.jbiosc.2019.07.009
  • Wang, J., Zhang, J., Guo, H., Cheng, Q., Abbas, Z., Tong, Y., Yang, T., Zhou, Y., Zhang, H., Wei, X., Si, D. and Zhang, R. (2023). Optimization of exopolysaccharide produced by Lactobacillus plantarum 301 and its antioxidant and anti-inflammatory activities. Foods, 12(13): 2481. https://doi.org/10.3390/foods12132481
  • Xu, R., Ma, S., Wang, Y., Liu, L. and Li, P. (2010). Screening, identification and statistic optimization of a novel exopolysaccharide producing Lactobacillus paracasei HCT. African Journal of Microbiology Research, 4(9): 783-795.
  • Yildiz, B. M., Yuzbasioglu, D., Yuksekdag, Z., Cetin, D., Unal, F. and Suludere, Z. (2023). In vitro genotoxic and antigenotoxic effects of an exopolysaccharide isolated from Lactobacillus salivarius KC27L. Toxicology In Vitro, 86: 105507. https://doi.org/10.1016/j.tiv.2022.105507
  • Yuksekdag, Z. N., Sahin, N. and Aslim, B. (2014). In vitro evaluation of the suitability potential probiotic of lactobacilli isolates from the gastrointestinal tract of chicken. European Food Research and Technology, 239 (2): 313-320. https://doi.org/10.1007/s00217-014-2224-x
  • Zhang, Z., Liu, Z., Tao, X. and Wei, H. (2016). Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities. Carbohydrate Polymers, 153: 25-33. https://doi.org/10.1016/j.carbpol.2016.07.084
  • Zhao, B., Wang, X., Liu, H., Lv, C. and Lu, J. (2020). Structural characterization and antioxidant activity of oligosaccharides from Panax ginseng C.A Meyer. International Journal of Biological Macromolecules, 150: 737-745. https://doi.org/10.1016/j.ijbiomac.2020.02.016
  • Zhou, Y., Cui, Y. and Qu, X. (2019). Exopolysaccharides of lactic acid bacteria: Structure, bioactivity, and associations: A review. Carbohydrate Polymers, 207: 317-332. https://doi.org/10.1016/j.carbpol.2018.11.093
  • Żółkiewicz, J., Marzec, A., Ruszczyński, M. and Feleszko, W. (2020). Postbiotics-a step beyond pre- and probiotics. Nutrients, 12(8): 2189. https://doi.org/10.3390/nu12082189
There are 63 citations in total.

Details

Primary Language English
Subjects Food Biotechnology, Food Microbiology
Journal Section Articles
Authors

Kübra Çelik 0009-0000-3857-7452

Zehranur Yuksekdag 0000-0002-0381-5876

Berat Çınar Acar 0000-0003-4662-0865

Filiz Kara 0000-0002-5017-0783

Project Number 05/2017-08
Early Pub Date September 12, 2024
Publication Date
Submission Date October 3, 2023
Acceptance Date July 18, 2024
Published in Issue Year 2024 Volume: 21 Issue: 4

Cite

APA Çelik, K., Yuksekdag, Z., Çınar Acar, B., Kara, F. (2024). Determination of Antioxidant and Antimicrobial Activities of Cell-Free Supernatant (CFSKC27L) and Exopolysaccharide (EPSKC27L) obtained from Ligilactobacillus salivarius KC27L. Tekirdağ Ziraat Fakültesi Dergisi, 21(4), 928-941. https://doi.org/10.33462/jotaf.1370839
AMA Çelik K, Yuksekdag Z, Çınar Acar B, Kara F. Determination of Antioxidant and Antimicrobial Activities of Cell-Free Supernatant (CFSKC27L) and Exopolysaccharide (EPSKC27L) obtained from Ligilactobacillus salivarius KC27L. JOTAF. September 2024;21(4):928-941. doi:10.33462/jotaf.1370839
Chicago Çelik, Kübra, Zehranur Yuksekdag, Berat Çınar Acar, and Filiz Kara. “Determination of Antioxidant and Antimicrobial Activities of Cell-Free Supernatant (CFSKC27L) and Exopolysaccharide (EPSKC27L) Obtained from Ligilactobacillus Salivarius KC27L”. Tekirdağ Ziraat Fakültesi Dergisi 21, no. 4 (September 2024): 928-41. https://doi.org/10.33462/jotaf.1370839.
EndNote Çelik K, Yuksekdag Z, Çınar Acar B, Kara F (September 1, 2024) Determination of Antioxidant and Antimicrobial Activities of Cell-Free Supernatant (CFSKC27L) and Exopolysaccharide (EPSKC27L) obtained from Ligilactobacillus salivarius KC27L. Tekirdağ Ziraat Fakültesi Dergisi 21 4 928–941.
IEEE K. Çelik, Z. Yuksekdag, B. Çınar Acar, and F. Kara, “Determination of Antioxidant and Antimicrobial Activities of Cell-Free Supernatant (CFSKC27L) and Exopolysaccharide (EPSKC27L) obtained from Ligilactobacillus salivarius KC27L”, JOTAF, vol. 21, no. 4, pp. 928–941, 2024, doi: 10.33462/jotaf.1370839.
ISNAD Çelik, Kübra et al. “Determination of Antioxidant and Antimicrobial Activities of Cell-Free Supernatant (CFSKC27L) and Exopolysaccharide (EPSKC27L) Obtained from Ligilactobacillus Salivarius KC27L”. Tekirdağ Ziraat Fakültesi Dergisi 21/4 (September 2024), 928-941. https://doi.org/10.33462/jotaf.1370839.
JAMA Çelik K, Yuksekdag Z, Çınar Acar B, Kara F. Determination of Antioxidant and Antimicrobial Activities of Cell-Free Supernatant (CFSKC27L) and Exopolysaccharide (EPSKC27L) obtained from Ligilactobacillus salivarius KC27L. JOTAF. 2024;21:928–941.
MLA Çelik, Kübra et al. “Determination of Antioxidant and Antimicrobial Activities of Cell-Free Supernatant (CFSKC27L) and Exopolysaccharide (EPSKC27L) Obtained from Ligilactobacillus Salivarius KC27L”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 21, no. 4, 2024, pp. 928-41, doi:10.33462/jotaf.1370839.
Vancouver Çelik K, Yuksekdag Z, Çınar Acar B, Kara F. Determination of Antioxidant and Antimicrobial Activities of Cell-Free Supernatant (CFSKC27L) and Exopolysaccharide (EPSKC27L) obtained from Ligilactobacillus salivarius KC27L. JOTAF. 2024;21(4):928-41.