Research Article
BibTex RIS Cite

Assessment of Crop Water Stress Index (CWSI) of Sorghum Irrigated by Surface and Subsurface Drip Irrigation Methods under Mediterranean Conditions

Year 2024, Volume: 21 Issue: 5, 1130 - 1147, 23.12.2024
https://doi.org/10.33462/jotaf.1403719

Abstract

In recent years, subsurface drip irrigation has become increasingly important in view of the increasing drought. As it is a newly developed method, the effects of subsurface drip irrigation (SSDI) and surface drip irrigation (SDI) need to be compared in terms of plant growth and yield parameters as well as water savings. The CWSI is an important index that indicates the water status in the plant and is closely related to yield and plant development parameters. The aim of the study is to compare the CWSI calculated with the SDI and SSDI methods in sorghum. The relationship between CWSI and physiological parameters (leaf number (LN), leaf area index (LAI), chlorophyll content (CC)), as well as bioethanol and juice yield are also evaluated in the study. The study was designed in a randomized complete block design to include two drip irrigation methods (SDI and SSDI) and five different irrigation treatments (I0, I25, I50, I75, and I100) in three replications in Antalya in 2017. The full irrigation treatment was applied when 40% of the available soil water capacity in the soil profile of 0-90 cm was depleted, while the deficit irrigation treatments were applied at 75%, 50% and 25% of the full irrigation treatment. Consequently, the upper limit value was calculated as 5.5oC and the lower limit equation was determined as Tc-Ta = -1.96*VPD-0.08 under Mediterranean conditions for the sorghum plant. Compared to the SDI treatments, lower CWSI values were calculated for the SSDI treatments. Additionally, it was determined that as the CWSI increased in sorghum, leaf number, leaf area index, and chlorophyll content values decreased and as a result, juice and bioethanol yield decreased. It was determined that there was a high level of exponential relationship and a strong negative correlation between CWSI-irrigation, CWSI-ET, CWSI-leaf number, CWSI-LAI, CWSI-CC, CWSI-Juice yield, CWSI-bioethanol yield, and CWSI-IWP for both irrigation methods in sorghum. Considering the lower CWSI and higher bioethanol yield, it was concluded that the SSDI method is more suitable for sorghum.

Ethical Statement

There is no need to obtain permission from the ethics committee for this study.

Supporting Institution

TUBITAK Turkish Scientific and Technical Research Council

Thanks

TUBITAK Turkish Scientific and Technical Research Council

References

  • Abdul-Jabbar, A. S., Lugg, D. G., Sammis, T. W. and Gay, L. W. (1985). Relationships between crop water stress index and alfalfa yield and evapotranspiration. Transactions of the ASAE, 28(2): 454-461.
  • Ajayi, A. and Olufayo, A. A. (2004). Evaluation of two temperature stress indices to estimate grain sorghum yield and evapotranspiration. Agronomy Journal, 96:1282-1287. Aksoy, M., Efendioğlu Çelik, A., Dok, M., Yücel, C. and Aydın, K. (2023). Çukurova koşullarında yetiştirilen tatlı sorgum genotiplerinin selülozik biyoetanol veriminin belirlenmesi. Jounral of Tekirdag Agricultural Faculty, 20(1): 61-70.
  • Alghory, A. and Yazar, A. (2019). Evaluation of crop water stress index and leaf water potential for deficit irrigation management of sprinkler-irrigated wheat. Irrigation Science, 37(1): 61–77.
  • Allen, R. G., Pereira, L. S., Raes, D., Smith, M. and Ab, W. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper. 56, FAO, Rome, 300(9): D05109.
  • Almodares, A., Hadi, M. and Dosti, B. (2007). Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. Journal of Biological Sciences, 7: 1492-1495.
  • Alves, I. and Pereira, L. S. (2000). Non-water-stressed baselines for irrigation scheduling with infrared thermometers: a new approach. Irrigation Science, 19: 101-106.
  • Assefa, Y., Staggenborg, S. A. and Prasad, V. P. V. (2010). Grain sorghum water requirement and responses to drought stress: a review. Crop Management, 9: 1-11.
  • Aydinsakir, K., Buyuktas, D., Dinç, N., Erdurmus, C., Bayram, E. and Yegin, A. B. (2021). Yield and productivity of sorghum under surface and subsurface drip irrigation. Agricultural Water Management, 243: 1-13.
  • Azadi, H., Jong, S., Reudder, B., Maeyer, P. and Witlox, F. (2012). How sustainable is bioethanol production in Brazil? Renewable and Sustainable Energy Reviews, 16: 3599-3603.
  • Bahmani, O., Sabziparvar, A. A. and Khosravi, R. (2017). Evaluation of yield, quality, and crop water stress index of sugar beet under different irrigation regimes. Water Supply, 17(2): 571-578.
  • Ballester, C., Jiménez-Bello, M., Castel, J. and Intrigliolo, D. (2013). The usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agricultural and Forest Meteorology, 168: 120-129.
  • Bell, J. M., Schwartz, R., McInnes, K. J., Howell, T. and Morgan, C. L. S. (2018). Deficit irrigation effects on yield and yield components of grain sorghum. Agricultural Water Management, 203: 289-296.
  • Bellvert, J., Zarco-Tejada, P. J., Girona, J. and Fereres, E. (2014). Mapping crop water stress index in a ’pinot-noir’ vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precision Agriculture, 15(4): 361-376.
  • Bozkurt Çolak, Y. and Yazar, A. (2017). Evaluation of crop water stress index on Royal table grape variety under partial root drying and conventional deficit irrigation regimes in the Mediterranean Region. Scientia Horticulturae, 224: 384-394.
  • Bozkurt Çolak, Y., Yazar, A., Alghory, A. and Tekin, S. (2021). Evaluation of crop water stress index and leaf water potential for differentially irrigated quinoa with surface and subsurface drip systems. Irrigation Science, 39: 81-100.
  • Bozkurt Çolak, Y., Yazar, A., Çolak, İ., Akça, H. and Duraktekin, G. (2015). Evaluation of crop water stress index (CWSI) for eggplant under varying irrigation regimes using surface and subsurface drip systems. Agriculture and Agricultural Science Procedia, 4: 372-382.
  • Braunworth, W. S. and Mack, H. J. (1989) The possible use of the crop water stress index as an indicator of evapotranspiration deficits and yield reductions in sweet corn. Journal of the American Society for Horticultural Science, 114: 542-546.
  • Campi, P., Navarro, A., Palumbo, D., Solimando, M., Lonigro, A. and Mastrorilli, M. (2014). Productivity of energy sorghum irrigated with reclaimed wastewater. Italian Journal of Agronomy, 9(3): 115-119.
  • Candogan, B. N., Sincik, M., Buyukcangaz, H., Demirtas, C., Goksoy, A. T. and Yazgan, S. (2013). Yield, quality, and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions. Agricultural Water Management, 118: 113– 121.
  • Cui, X., Xu, L., Yuan, G., Wang W. and Luo, Y. (2005). Crop water stress index model for monitoring summer maize water stress based on canopy surface temperature. Transations of the Chinese Society of Agricultural Engineering, 21: 22–24. (in Chinese with English abstract).
  • Davila-Gomez, F. J., Chuck-Hernandez, C., Perez-Carrillo, E., Rooney, W. L. and Serna-Saldivar S. O. (2011). Evaluation of bioethanol production from five different varieties of sweet and forage sorghums (Sorghum bicolor (L) Moench). Industrial Crops and Products, 33(3): 611-616.
  • De Jonge, K. C., Taghvaeian, S., Trout, T. J. and Comas, L. H. (2015). Comparison of canopy temperature-based water stress indices for maize. Agricultural Water Management, 156: 51-62.
  • Dercas, N. and Liakatas, A. (2007). Water and radiation effect on sweet sorghum productivity. Water Resources Management, 21(9): 1585-1600.
  • Erdem, T., Erdem, Y., Okursoy, H. and Göçmen, E. (2012). Variations of non-water stressed baselines for dwarf cherry trees under different irrigation regimes. Journal of Tekirdag Agricultural Faculty, 9(2): 41-49.
  • Erdem, Y., Arin, L., Erdem, T., Polat, S., Deveci, M., Okursoy, H. and Gültaş, H.T. (2010). Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica). Agricultural Water Management, 98: 148-156.
  • Fracassoa, A., Trindadeb, L. and Amaduccia, S. (2016). Drought tolerance strategies were highlighted by two sorghum bicolor races in a dry-down experiment. Journal of plant physiology, 190: 1-14.
  • Gardner, B. R. and Shock, C. C. (1989). Interpreting the Crop Water Stress Index. ASAE Paper 89-2642. ASAE, St. Joseph, MI.
  • Gardner, B. R., Nielsen, D. C. and Shock, C. C. (1992). Infrared thermometry and the crop water stress index. I. History, theory, and baselines. Journal of Production Agriculture, 5: 462-466.
  • Godson-Amamoo, S., Kato, T., and Katsura, K. (2022). Empirical setting of the water stressed baseline ıncreases the uncertainty of the crop water stress ındex in a humid temperate climate in different water regimes. Water, 14:1833.
  • Gontia, N. K. and Tiwari, K. N. (2008). Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry. Agricultural Water Management, 95: 1144-1152.
  • Gonzalez-Dugo, V., Testi, L., Villalobos, F. J., Lopez-Bernal, A., Orgaz, F., Zarco-Tejada, P. J. and Fereres, E. (2020). Empirical validation of the relationship between the crop water stress index and relative transpiration in almond trees. Agricultural and Forest Meteorology, 292-293.
  • Grimes, D. W. and Williams, L. E. (1990). Irrigation effects on plant water relations and productivity of thompson seedless grapevines. Crop Science, 30(2): 255-260.
  • Gu, S., Liao, Q., Gao, S., Kang, S., Du, T. and Ding, R. (2021). Crop water stress index as a proxy of phenotyping maize performance under combined water and salt stress. Remote Sensing, 13(22): 4710.
  • Güden, B., Erdurmus, C., Erdal, S. and Uzun, B. (2021). Evaluation of sweet sorghum genotypes for bioethanol yield and related traits. Biofuels Bioproducts Biorefining, 15: 545-562.
  • Howell, T. A., Tolk, J. A., Evett, S. R., Copeland, K. S. and Dusek, D. A. (2007). Evapotranspiration of Deficit Irrigated Sorghum. Proceedings of the World Water and Environmental Resources Congress. May 15-19. P. 1-10. Tampa, Florida.
  • Hsiao, T. C. (1973). Plant responses to water stress. Annual Review of Plant Biology, 24: 519-570.
  • Hunter, E. L. (1994). Development, sugar yield, and ethanol potential of sweet sorghum. (MSc. Thesis) Lowa State University, Ames Lowa.
  • Idso, S. B. (1982). Non-water stressed baseline: a key to measuring and interpreting plant water stress. Agricultural Meteorology, 27: 59-70.
  • Idso, S. B., Jackson, R. D., Pinter, J. R., Reginato, R. J., and Hatfield, J. L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 24: 45-55.
  • Irmak, S., Haman, D. Z., and Bastug, R. (2000). Determination of crop water stress index for irrigation timing and yield estimation of corn. Agronomy Journal, 92:1221–1227.
  • Jabereldar, A. A., El Naim, A. M., Awad, A. A. and Dagash, Y. M. (2017). Effect of water stress on yield and water use efficiency of sorghum (Sorghum bicolor L. Moench) in a semi-arid environment. International Journal of Agriculture and Forestry, 7(1): 1-6.
  • Jackson, R. D. (1982). Canopy Temperature and Crop Water Stress. In: Advances in Irrigation, Eds: Hillel, D. Academic Press, Inc, New York, U.S.A.
  • Jackson, R. D., Idso, S. B., Reginato, R. J., and Pinter, P. J. (1981). Canopy temperature as a crop water stress indicator. Water Resources Research, 17: 1133-1138.
  • Jahansouz, M. R., Afshar, R. K., Heidari, H. and Hashemi, M. (2014). Evaluation of yield and quality of sorghum and millet as alternative forage crops to corn under normal and deficit irrigation regimes. Jordan Journal of Agricultural Sciences, 10(4): 699-715.
  • Jones, H. G. (1990). Plant water relations and implications for irrigation scheduling. Acta Horticulturae, 278, 67-76.
  • Jones, H. G. (1999). Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agricultural and Forest Meteorology, 95: 139-149.
  • Jones, H. G. (2004). Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of Experimental Botany, 55: 2427-2436.
  • Jones, H. G. (2014). Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Cambridge University Press, New York, U.S.A.
  • Kadam, K. L. (2002). Environmental Benefits on a Life Cycle Basis of Using Bagasse-Derived Ethanol as a Gasoline Oxygenate in India. Energy Policy, 30: 371-384.
  • Kanbar, A., Shakeri, E., Alhajturki, D., Horn, T., Emam, Y, Tabatabaei, S. A. and Nick P. (2020). Morphological and molecular characterization of sweet, grain and forage sorghum (Sorghum bicolor L.) genotypes grown under temperate climatic conditions. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 154(1): 49-58.
  • Karataylı, B. (2021). Determination of plant water stress index in sorghum using infrared thermometer technique and programming irrigations (MSc Thesis). Çukurova University, Agricultural Structures and Irrigation Science Department, Adana, Türkiye.
  • Keten, M. (2020). Determination of water-yield relationships of silage maize and sorghum plants by using plant stress index (CWSI and WDI) under deficit irrigation conditions (PhD Thesis). Kahramanmaraş Sütçü İmam University, Institute of Science, Kahramanmaraş, Türkiye.
  • Khorsand, A., Rezaverdinejad, V., Asgarzadeh, H., Majnooni-Heris A., Rahimi, A. and Besharat, S. (2019). Irrigation scheduling of maize based on plant and soil indices with surface drip irrigation subjected to different irrigation regimes. Agricultural Water Management, 224: 105740.
  • Khorsandi, A., Hemmat, A., Mireei, S. A. and Amirfattahi, R. (2018). Plant temperature-based indices using infrared thermography for detecting water status in sesame under greenhouse conditions. Agricultural Water Management, 204: 222-233.
  • King, B. A., Shellie, K. C., Tarkalson, D. D., Levin A. D., Sharma, V. and Bjorneberg, D. L. (2020). Data-driven models for canopy temperature-based irrigation scheduling. American Society of Agricultural and Biological Engineers, 63(5): 1579-1592.
  • Kirnak, H., Irik, H. A. and Unlukara, A. (2019). Potential use of crop water stress index (CWSI) in irrigation scheduling of drip-irrigated seed pumpkin plants with different irrigation levels. Scientia Horticulturae, 256:108608.
  • Klocke, N. L., Currie, R. S., Tomsicek, D. J. and Koehn, J. W. (2012). Sorghum yield response to deficit irrigation. Transactions of the ASABE, 55(3): 947–955.
  • Kullberg, E. G., Dejonge, K. C. and Chavez, J. L. (2017). Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agricultural Water Management, 179: 64-73.
  • Lal, R. (2008). Crop residues as soil amendments and feedstock for bioethanol production. Waste Management, 28 (4):747-758.
  • Leinonen, I. and Jones, H. G. (2004). Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. Journal Experimental Botany, 55: 1423–1431.
  • Lena, B. P., Ortiz, B.V., Jim´enez-Lope, A. F., Sanz-Saez, A., O’Shaughnessy S. A., Durstock, M. K. and Pate, G. (2020). Evaluation of infrared canopy temperature data about soil water-based irrigation scheduling in a humid subtropical climate. Journal of the ASABE, 63(5): 1217-1231.
  • Lueschen, W. E., Putnam, D. H., Kanne, B. K. and Hoverstad, T. R. (1991). Agronomic practices for the production of ethanol from sweet sorghum. Journal of Production Agriculture, 4: 619-625.
  • Maes, W. H. and Steppe, K. (2012). Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. Journal Experimental Botany, 63: 4671-4712.
  • Mahinda, A. J. (2014). Effect of drip irrigation on the production and economic returns of sorghum (Sorghum bicolor) in semi-arid areas of Tanzania (MSc. Thesis). University of Nairobi, Kenya.
  • Massacci, A., Battistelli, A. and Loreto, F. (1996). Effect of drought stress on photosynthetic characteristics, growth, and sugar accumulation of field-grown sweet sorghum. Australian Journal of Plant Physiology, 23: 331-340.
  • Mastrorilli, M., Campi, P., Palumbo, A., Navarro, F., Modugno, F. and Turci, V. (2011). Water Use Efficiency of Sorghum Cultivated for Energy in Mediterranean Environments. 19th European biomass conference and exhibition Proceedings of the 19th EU BC&E. June, P. 565-568 Berlin, Germany.
  • Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B. and Rakitin, V. Y. (1999). Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 106: 135-141.
  • Miller, A. N. and Ottman, M. J. (2012). Irrigation frequency effects on growth and ethanol yield in sweet sorghum. Agronomy Journal, 2 (1):60-70.
  • Moller, M., Alchanatis, V., Cohen, Y., Meron, M., Tsipris, J., Naor, A., Ostrovsky, V., Sprintsin, M. and Cohen, S. (2006). Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Journal of Experimental Botany, 58: 827-838.
  • Mullet, J., Morishige, D., Mc Cormick, R., Truong, S., Hilley, J., McKinley, B., Anderson, R., Olson, S. N. and Rooney, W. (2014). Energy Sorghum-A genetic model for the design of C4 grass bioenergy crops. Journal of Experimental Botany, 65(13): 3479-3489.
  • Mygdakos, E., Papanikolaou, C. and Sakellariou-Makrantonaki, M. (2009). Sorghum economics under different irrigation methods and water doses. New Medit, 8(4): 47-54.
  • Nielsen, D. C. (1990). Scheduling irrigations for soybeans with the crop water stress index (CWSI). Field Crops Research, 23 103–116.
  • Nielsen, D. C. (1994). Non water-stressed baselines for sunflowers. Agricultural Water Management, 26: 265-276.
  • O’Shaughnessy, S. A., Evett, S. R., Colaizzi, P. D. and Howell, T. A. (2011). Using radiation thermometry to evaluate crop water stress in soybean and cotton. Agricultural Water Management, 98:1523-1535.
  • O’Shaughnessy, S. A., Evett, S. R., Colaizzi, P. D. and Howell T. A. (2012). A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agricultural Water Management, 107: 122-132. OECD-FAO (2021). Agricultural Outlook 2021-2030. https://reliefweb.int/sites/reliefweb.int/files/resources/cb5332en.pdf (Access Date: 24.11.2021)
  • Olufayo, A. A., Baldy, C. and Ruelle, P. (1996). Sorghum yield, water use and canopy temperatures under different levels of irrigation. Agricultural Water Management, 30: 77-90.
  • Orta, A. H., Erdem, Y. and Erdem, T. (2003). Crop water stress index for watermelon. Scientia Horticulturae, 98(2): 121–130.
  • Payero, J. O, Neale, C. M. U. and Wright, J. L. (2005). Non-water-1 stressed baselines for calculating crop water stress index (CWSI) for alfalfa and tall fescue grass. Transactions of the ASAE, 48:653-661.
  • Payero, J. O. and Irmak, S. (2006). Variable upper and lower crop water stress index baselines for corn and soybean. Irrigation Science, 25: 21–32.
  • Polat, B. (2022). Determination of the effects of different lateral depth in subsurface drip irrigation system on bioethanol production together with growth of sorghum plant and simulation of moisture distribution in the soil profile with hydrus/2D model. (Ph.D. Thesis). Akdeniz University, The Institute of Science, Antalya, Turkey.
  • Prasad, V. B. R, Govindaraj, M., Djanaguiraman, M., Djalovic, I., Shailani, A., Rawat, N., Singla-Pareek, S. L., Pareek, A. and Prasad, P. V. V. (2021). Drought and high temperature stress in sorghum: Physiological, genetic, and molecular insights and breeding approaches. International Journal of Molecular Sciences, 22: 9826.
  • Reddy, B. V. S., Ramesh, S., Reddy, P., Ramaiah, B., Salimath, P. and Kachapur, R. (2005). Sweet sorghum potential alternate raw material for bioethanol and bioenergy. International Sorghum and Millets Newsletter, 46:79-86.
  • Rono, J. K., Cheruiyot, E. K., Othira, J. O. and Njuguna, V. W. (2018). Cane yield and juice volume determine ethanol yield in sweet sorghum (Sorghum bicolor L. Moench). International Journal of Applied Science, 1(2): 29-36.
  • Rostampour, M. F. (2013). Effect of irrigation regimes and polymer on dry matter, yield and several physiological traits of forage sorghum var. Speed feed. Africa Journal of Biotechnology, 12(51): 7074-7080.
  • Ru, C., Hu, X., Wang, W., Ran, H., Song, T. and Guo, Y. (2020). Evaluation of the crop water stress index as an indicator for the diagnosis of grapevine water deficiency in greenhouses. Horticulturae, 6: 864.
  • Sakellariou-Makrantonaki, M., Papalexis, D., Nakos, N. and Kalavrouziotis, I. K. (2007). Effects of modern irrigation methods on growth and energy production of sweet sorghum (var. Keller) on a dry year in central Greece. Agricultural Water Management, 90: 181–189.
  • Sakellariou-Makrantonaki, M., Papalexis, D., Nakos, N., Dassios, S., Chatzinikos, A., Papanikos, N. and Danalatos, N. (2006). Potential and Water-Limited Growth and Productivity of Fiber Sorghum in Central Greece Irrigated By Surface and Subsurface Drip Methods on a Rainy and a Dry Year. Proceedings of the Sixth International Conference of IASME/ WSEAS International Conference on Energy and Environmental Systems. 8-10 May, P 49-54, Chalkida, Greece.
  • Sammis, T. W., Riley, W. R. and Lugg, D. G. (1988). Crop water stress Index of pecans. Applied Engineering in Agriculture, 4(1): 39-45.
  • Sanchez, A. C., Subudhi, P. K., Rosenow, D. T. and Nguyen, H. T. (2002). Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Molecular Biology, 48: 713-726.
  • Sarkar, N., Ghosh, S. K., Bannerjee, S. and Aikat, K. (2012). Bioethanol production from agricultural wastes: an overview, Renewable Energy, 37: 19-27.
  • Sezen, S. M., Yazar, A., Dasgan, Y., Yucel, S., Akyıldız, A., Tekin, S. and Akhoundnejad, Y. (2014). Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying irrigation regimes. Agricultural Water Management, 143: 59-70.
  • Simbeye, D. S., Mkiramweni, M. E., Karaman, B. and Taskin, S. (2023). Plant water stress monitoring and control system. Smart Agricultural Technology, 3: 100066.
  • Smith, G. and Buxton, D. R. (1993). Temperate zone sweet sorghum ethanol production potential. Bioresource Technology, 43: 71-75.
  • Smith, W. K. (1978). Temperatures of desert plants: another perspective on the adaptability of leaf size. Science, 201: 614-616.
  • Suwarti, Efendi, R., Massinai, R. and Pabendon, M. B. (2018). Evaluation of sweet sorghum (Sorghum bicolor L. [Moench]) on several population density for bioethanol production. Earth and Environmental Science, 141: 012032.
  • Taghvaeian, S., Cha´vez, J. L., Bausch, W. C., DeJonge, K. C. and Trout, T. J. (2013). Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize. Irrigation Science, 32(1): 53-65.
  • Taghvaeian, S., Chávez, J. and Hansen, N. (2012). Infrared thermometry to estimate crop water stress index and water use of irrigated maize in northeastern Colorado. Remote Sensing, 4: 3619-3637.
  • Taghvaeian, S., Comas, L., Dejonge, K. C. and Trout, T. J. (2014). Conventional and simplified canopy temperature indices predict water stress in sunflower. Agricultural Water Management, 144: 69-80.
  • Tolk, J. A., Howell, T. A. and Miller, F. R. (2013). Yield component analysis of grain sorghum grown under water stress. Field Crops Research, 145: 44-51.
  • Vasilakoglou, I., Dhima, K., Karagiannidis, N. and Gatsis, T. (2011). Sweet sorghum productivity for biofuels under increased soil salinity and reduced irrigation. Field Crops Research, 120(1): 38-46.
  • Veysi, S., Naseri, A. A., Hamzeh, S. and Bartholomeus, H. A. (2017). Satellite based crop water stress index for irrigation scheduling in sugarcane fields. Agricultural Water Management, 189: 70-86.
  • Wang, L., Yu, Qiu, G., Zhang, X. and Chen, S. (2005). Application of a new method to evaluate crop water stress index. Irrigation Science, 24: 49-54.
  • Wani, S. P. (2012). Sorghum. In Crop Yield Response to Water Stress, FAO Irrigation and Drainage Paper 66, Eds: Steduto, P., Hsiao, T. C., Fereres, E. and Raes, D., Rome, Italy.
  • Wanjura, D. F. and Upchurch, D. R. (2000). Canopy temperature characterizations of corn and cotton water status. Transactions of the ASAE, 43: 867-875.
  • Wanjura, D. F., Hatfield, J. L. and Upchurch, D. R. (1990). Crop water stress index relationships with crop productivity. Irrigation Science, 11:93-99.
  • Xie, T. and Su, P. (2012). Canopy and leaf photosynthetic characteristics and water use efficiency of sweet sorghum under drought stress. Russian Journal of Plant Physiology, 59(2): 224-234.
  • Xu, J., Lv, Y., Liu, X., Dalson, T., Yang, S. and Wu, J. (2016). Diagnosing crop water stress of rice using infra-red thermal imager under water deficit condition. International Journal of Agriculture & Biology, 18: 565-572. Xu, W., Rosenow, D. T. and Nguyen, H. T. (2000). Stay grain trait in grain sorghum: relationship between visual rating and leaf chlorophyll concentration. Plant Breeding, 119: 365-367.
  • Yazar, A., Howell, T. A., Dusek, D. A. and Copeland, K. S. (1999). Evaluation of crop water stress index for LEPA irrigated corn. Irrigation Science, 18: 171-180.
  • Yetik, A. K. and Candoğan, B. N. (2023). Chlorophyll response to water stress and the potential of using crop water stress index in sugar beet farming. Sugar Tech, 25(1):57-68.
  • Yuan, G., Luo, Y., Sun, X. and Tang, D. (2004). Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain. Agricultural Water Management, 64: 29-40.
  • Zegada-Lizarazu W., Zatta Z. and Monti A. (2012). Water uptake efficiency and above- and belowground biomass development of sweet sorghum and maize under different water regimes. Plant and Soil, 351: 47-60.
  • Zhang, L., Zhang, H., Zhu, Q. and Niu, Y. (2023). Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value. Agricultural Water Management, 285: 108349.

Akdeniz Koşullarında Yüzeyüstü ve Yüzeyaltı Damla Sulama Yöntemleriyle Sulanan Sorgumun Bitki Su Stresi İndeksinin Değerlendirilmesi

Year 2024, Volume: 21 Issue: 5, 1130 - 1147, 23.12.2024
https://doi.org/10.33462/jotaf.1403719

Abstract

Son yıllarda artan kuraklığın olumsuz etkilerinden dolayı, yüzey altı damla sulama yöntemi önem kazanmıştır. Yeni geliştirilen bir yöntem olduğu için yüzey altı ve yüzey üstü damla sulama yöntemlerinin etkisinin hem bitki gelişimi ve verim parametreleri hem de su tasarrufu açısından karşılaştırılması gerekmektedir. Bitki su stresi indeksi (CWSI), bitkideki su durumunu gösteren önemli bir index olup, verim ve bitki gelişim parametreleri ile yakından ilişkili olduğu belirlenmiştir. Sorgumun biyoetanol üretim amacı ile yetiştirildiği düşünüldüğünde, su kaynaklarını verimli kullanan ve su kullanım etkinliğini arttıran bir sulama yöntemi üretiminin sürdürülebilir olmasını sağlayacak en önemli uygulama olarak görülmektedir. Bu çalışmanın amacı, sorgumda yüzey (SDI) ve yüzeyaltı (SSDI) damla sulama yöntemlerinde hesaplanan bitki su stres indeksinin (CWSI) karşılaştırılmasıdır. Çalışmada CWSI ile bazı fizyolojik parametreler (yaprak sayısı, yaprak alanı indeksi, klorofil içeriği) ve biyoetanol, özsu verimi arasındaki ilişkiler değerlendirilmiştir. Çalışma, Antalya bölgesinde 2017 yılında tesadüf bloklarında bölünmüş parseller deneme desenine göre üç yinelemeli olarak yürütülmüştür. Deneme konuları, kullanılabilir su tutma kapasitesinin farklı oranları olacak şekilde beş farklı (%100, %75, %50, %25 ve %0) su uygulama düzeyi yüzey (SDI) ve yüzeyaltı (SSDI) damla sulama yöntemlerinde oluşturularak belirlenmiştir. Sonuç olarak sorgum bitkisi için Akdeniz koşullarında üst sınır değeri 5.5oC, alt sınır denklemi ise Tc-Ta = -1.96*VPD-0.08 olarak hesaplanmıştır. Deneme süresince, SDI yöntemi ile karşılaştırıldığında SSDI yönteminde hesaplanan CWSI değerlerinin daha düşük olduğu gözlemlendi. Ayrıca sorgumda CWSI arttıkça yaprak sayısı, yaprak alan indeksi ve klorofil içeriği değerlerinin azaldığı ve bunun sonucunda özsu ve biyoetanol veriminin azaldığı saptanmıştır. Bu çalışmada, sorgumda sulama suyu seviyesi (I)-CWSI, bitki su tüketimi (ET)-CWSI, bitkinin fizyolojik özellikleri (yaprak sayısı, yaprak alan indeksi, klorofil içeriği)-CWSI arasında, özsu verimi-CWSI, biyoethanol verimi-CWSI arasında yüksek düzeyde üstel ilişki ve negatif korelasyon olduğu belirlenmiştir. Düşük CWSI ve yüksek biyoetanol verimi dikkate alındığında, sorgum bitkisi için SSDI yönteminin daha uygun olduğu sonucuna varılmıştır.

Ethical Statement

Bu çalışma için etik kuruldan izin alınmasına gerek yoktur.

Supporting Institution

TÜBİTAK Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Thanks

TÜBİTAK Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

References

  • Abdul-Jabbar, A. S., Lugg, D. G., Sammis, T. W. and Gay, L. W. (1985). Relationships between crop water stress index and alfalfa yield and evapotranspiration. Transactions of the ASAE, 28(2): 454-461.
  • Ajayi, A. and Olufayo, A. A. (2004). Evaluation of two temperature stress indices to estimate grain sorghum yield and evapotranspiration. Agronomy Journal, 96:1282-1287. Aksoy, M., Efendioğlu Çelik, A., Dok, M., Yücel, C. and Aydın, K. (2023). Çukurova koşullarında yetiştirilen tatlı sorgum genotiplerinin selülozik biyoetanol veriminin belirlenmesi. Jounral of Tekirdag Agricultural Faculty, 20(1): 61-70.
  • Alghory, A. and Yazar, A. (2019). Evaluation of crop water stress index and leaf water potential for deficit irrigation management of sprinkler-irrigated wheat. Irrigation Science, 37(1): 61–77.
  • Allen, R. G., Pereira, L. S., Raes, D., Smith, M. and Ab, W. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper. 56, FAO, Rome, 300(9): D05109.
  • Almodares, A., Hadi, M. and Dosti, B. (2007). Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. Journal of Biological Sciences, 7: 1492-1495.
  • Alves, I. and Pereira, L. S. (2000). Non-water-stressed baselines for irrigation scheduling with infrared thermometers: a new approach. Irrigation Science, 19: 101-106.
  • Assefa, Y., Staggenborg, S. A. and Prasad, V. P. V. (2010). Grain sorghum water requirement and responses to drought stress: a review. Crop Management, 9: 1-11.
  • Aydinsakir, K., Buyuktas, D., Dinç, N., Erdurmus, C., Bayram, E. and Yegin, A. B. (2021). Yield and productivity of sorghum under surface and subsurface drip irrigation. Agricultural Water Management, 243: 1-13.
  • Azadi, H., Jong, S., Reudder, B., Maeyer, P. and Witlox, F. (2012). How sustainable is bioethanol production in Brazil? Renewable and Sustainable Energy Reviews, 16: 3599-3603.
  • Bahmani, O., Sabziparvar, A. A. and Khosravi, R. (2017). Evaluation of yield, quality, and crop water stress index of sugar beet under different irrigation regimes. Water Supply, 17(2): 571-578.
  • Ballester, C., Jiménez-Bello, M., Castel, J. and Intrigliolo, D. (2013). The usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agricultural and Forest Meteorology, 168: 120-129.
  • Bell, J. M., Schwartz, R., McInnes, K. J., Howell, T. and Morgan, C. L. S. (2018). Deficit irrigation effects on yield and yield components of grain sorghum. Agricultural Water Management, 203: 289-296.
  • Bellvert, J., Zarco-Tejada, P. J., Girona, J. and Fereres, E. (2014). Mapping crop water stress index in a ’pinot-noir’ vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precision Agriculture, 15(4): 361-376.
  • Bozkurt Çolak, Y. and Yazar, A. (2017). Evaluation of crop water stress index on Royal table grape variety under partial root drying and conventional deficit irrigation regimes in the Mediterranean Region. Scientia Horticulturae, 224: 384-394.
  • Bozkurt Çolak, Y., Yazar, A., Alghory, A. and Tekin, S. (2021). Evaluation of crop water stress index and leaf water potential for differentially irrigated quinoa with surface and subsurface drip systems. Irrigation Science, 39: 81-100.
  • Bozkurt Çolak, Y., Yazar, A., Çolak, İ., Akça, H. and Duraktekin, G. (2015). Evaluation of crop water stress index (CWSI) for eggplant under varying irrigation regimes using surface and subsurface drip systems. Agriculture and Agricultural Science Procedia, 4: 372-382.
  • Braunworth, W. S. and Mack, H. J. (1989) The possible use of the crop water stress index as an indicator of evapotranspiration deficits and yield reductions in sweet corn. Journal of the American Society for Horticultural Science, 114: 542-546.
  • Campi, P., Navarro, A., Palumbo, D., Solimando, M., Lonigro, A. and Mastrorilli, M. (2014). Productivity of energy sorghum irrigated with reclaimed wastewater. Italian Journal of Agronomy, 9(3): 115-119.
  • Candogan, B. N., Sincik, M., Buyukcangaz, H., Demirtas, C., Goksoy, A. T. and Yazgan, S. (2013). Yield, quality, and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions. Agricultural Water Management, 118: 113– 121.
  • Cui, X., Xu, L., Yuan, G., Wang W. and Luo, Y. (2005). Crop water stress index model for monitoring summer maize water stress based on canopy surface temperature. Transations of the Chinese Society of Agricultural Engineering, 21: 22–24. (in Chinese with English abstract).
  • Davila-Gomez, F. J., Chuck-Hernandez, C., Perez-Carrillo, E., Rooney, W. L. and Serna-Saldivar S. O. (2011). Evaluation of bioethanol production from five different varieties of sweet and forage sorghums (Sorghum bicolor (L) Moench). Industrial Crops and Products, 33(3): 611-616.
  • De Jonge, K. C., Taghvaeian, S., Trout, T. J. and Comas, L. H. (2015). Comparison of canopy temperature-based water stress indices for maize. Agricultural Water Management, 156: 51-62.
  • Dercas, N. and Liakatas, A. (2007). Water and radiation effect on sweet sorghum productivity. Water Resources Management, 21(9): 1585-1600.
  • Erdem, T., Erdem, Y., Okursoy, H. and Göçmen, E. (2012). Variations of non-water stressed baselines for dwarf cherry trees under different irrigation regimes. Journal of Tekirdag Agricultural Faculty, 9(2): 41-49.
  • Erdem, Y., Arin, L., Erdem, T., Polat, S., Deveci, M., Okursoy, H. and Gültaş, H.T. (2010). Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica). Agricultural Water Management, 98: 148-156.
  • Fracassoa, A., Trindadeb, L. and Amaduccia, S. (2016). Drought tolerance strategies were highlighted by two sorghum bicolor races in a dry-down experiment. Journal of plant physiology, 190: 1-14.
  • Gardner, B. R. and Shock, C. C. (1989). Interpreting the Crop Water Stress Index. ASAE Paper 89-2642. ASAE, St. Joseph, MI.
  • Gardner, B. R., Nielsen, D. C. and Shock, C. C. (1992). Infrared thermometry and the crop water stress index. I. History, theory, and baselines. Journal of Production Agriculture, 5: 462-466.
  • Godson-Amamoo, S., Kato, T., and Katsura, K. (2022). Empirical setting of the water stressed baseline ıncreases the uncertainty of the crop water stress ındex in a humid temperate climate in different water regimes. Water, 14:1833.
  • Gontia, N. K. and Tiwari, K. N. (2008). Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry. Agricultural Water Management, 95: 1144-1152.
  • Gonzalez-Dugo, V., Testi, L., Villalobos, F. J., Lopez-Bernal, A., Orgaz, F., Zarco-Tejada, P. J. and Fereres, E. (2020). Empirical validation of the relationship between the crop water stress index and relative transpiration in almond trees. Agricultural and Forest Meteorology, 292-293.
  • Grimes, D. W. and Williams, L. E. (1990). Irrigation effects on plant water relations and productivity of thompson seedless grapevines. Crop Science, 30(2): 255-260.
  • Gu, S., Liao, Q., Gao, S., Kang, S., Du, T. and Ding, R. (2021). Crop water stress index as a proxy of phenotyping maize performance under combined water and salt stress. Remote Sensing, 13(22): 4710.
  • Güden, B., Erdurmus, C., Erdal, S. and Uzun, B. (2021). Evaluation of sweet sorghum genotypes for bioethanol yield and related traits. Biofuels Bioproducts Biorefining, 15: 545-562.
  • Howell, T. A., Tolk, J. A., Evett, S. R., Copeland, K. S. and Dusek, D. A. (2007). Evapotranspiration of Deficit Irrigated Sorghum. Proceedings of the World Water and Environmental Resources Congress. May 15-19. P. 1-10. Tampa, Florida.
  • Hsiao, T. C. (1973). Plant responses to water stress. Annual Review of Plant Biology, 24: 519-570.
  • Hunter, E. L. (1994). Development, sugar yield, and ethanol potential of sweet sorghum. (MSc. Thesis) Lowa State University, Ames Lowa.
  • Idso, S. B. (1982). Non-water stressed baseline: a key to measuring and interpreting plant water stress. Agricultural Meteorology, 27: 59-70.
  • Idso, S. B., Jackson, R. D., Pinter, J. R., Reginato, R. J., and Hatfield, J. L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 24: 45-55.
  • Irmak, S., Haman, D. Z., and Bastug, R. (2000). Determination of crop water stress index for irrigation timing and yield estimation of corn. Agronomy Journal, 92:1221–1227.
  • Jabereldar, A. A., El Naim, A. M., Awad, A. A. and Dagash, Y. M. (2017). Effect of water stress on yield and water use efficiency of sorghum (Sorghum bicolor L. Moench) in a semi-arid environment. International Journal of Agriculture and Forestry, 7(1): 1-6.
  • Jackson, R. D. (1982). Canopy Temperature and Crop Water Stress. In: Advances in Irrigation, Eds: Hillel, D. Academic Press, Inc, New York, U.S.A.
  • Jackson, R. D., Idso, S. B., Reginato, R. J., and Pinter, P. J. (1981). Canopy temperature as a crop water stress indicator. Water Resources Research, 17: 1133-1138.
  • Jahansouz, M. R., Afshar, R. K., Heidari, H. and Hashemi, M. (2014). Evaluation of yield and quality of sorghum and millet as alternative forage crops to corn under normal and deficit irrigation regimes. Jordan Journal of Agricultural Sciences, 10(4): 699-715.
  • Jones, H. G. (1990). Plant water relations and implications for irrigation scheduling. Acta Horticulturae, 278, 67-76.
  • Jones, H. G. (1999). Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agricultural and Forest Meteorology, 95: 139-149.
  • Jones, H. G. (2004). Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of Experimental Botany, 55: 2427-2436.
  • Jones, H. G. (2014). Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Cambridge University Press, New York, U.S.A.
  • Kadam, K. L. (2002). Environmental Benefits on a Life Cycle Basis of Using Bagasse-Derived Ethanol as a Gasoline Oxygenate in India. Energy Policy, 30: 371-384.
  • Kanbar, A., Shakeri, E., Alhajturki, D., Horn, T., Emam, Y, Tabatabaei, S. A. and Nick P. (2020). Morphological and molecular characterization of sweet, grain and forage sorghum (Sorghum bicolor L.) genotypes grown under temperate climatic conditions. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 154(1): 49-58.
  • Karataylı, B. (2021). Determination of plant water stress index in sorghum using infrared thermometer technique and programming irrigations (MSc Thesis). Çukurova University, Agricultural Structures and Irrigation Science Department, Adana, Türkiye.
  • Keten, M. (2020). Determination of water-yield relationships of silage maize and sorghum plants by using plant stress index (CWSI and WDI) under deficit irrigation conditions (PhD Thesis). Kahramanmaraş Sütçü İmam University, Institute of Science, Kahramanmaraş, Türkiye.
  • Khorsand, A., Rezaverdinejad, V., Asgarzadeh, H., Majnooni-Heris A., Rahimi, A. and Besharat, S. (2019). Irrigation scheduling of maize based on plant and soil indices with surface drip irrigation subjected to different irrigation regimes. Agricultural Water Management, 224: 105740.
  • Khorsandi, A., Hemmat, A., Mireei, S. A. and Amirfattahi, R. (2018). Plant temperature-based indices using infrared thermography for detecting water status in sesame under greenhouse conditions. Agricultural Water Management, 204: 222-233.
  • King, B. A., Shellie, K. C., Tarkalson, D. D., Levin A. D., Sharma, V. and Bjorneberg, D. L. (2020). Data-driven models for canopy temperature-based irrigation scheduling. American Society of Agricultural and Biological Engineers, 63(5): 1579-1592.
  • Kirnak, H., Irik, H. A. and Unlukara, A. (2019). Potential use of crop water stress index (CWSI) in irrigation scheduling of drip-irrigated seed pumpkin plants with different irrigation levels. Scientia Horticulturae, 256:108608.
  • Klocke, N. L., Currie, R. S., Tomsicek, D. J. and Koehn, J. W. (2012). Sorghum yield response to deficit irrigation. Transactions of the ASABE, 55(3): 947–955.
  • Kullberg, E. G., Dejonge, K. C. and Chavez, J. L. (2017). Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agricultural Water Management, 179: 64-73.
  • Lal, R. (2008). Crop residues as soil amendments and feedstock for bioethanol production. Waste Management, 28 (4):747-758.
  • Leinonen, I. and Jones, H. G. (2004). Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. Journal Experimental Botany, 55: 1423–1431.
  • Lena, B. P., Ortiz, B.V., Jim´enez-Lope, A. F., Sanz-Saez, A., O’Shaughnessy S. A., Durstock, M. K. and Pate, G. (2020). Evaluation of infrared canopy temperature data about soil water-based irrigation scheduling in a humid subtropical climate. Journal of the ASABE, 63(5): 1217-1231.
  • Lueschen, W. E., Putnam, D. H., Kanne, B. K. and Hoverstad, T. R. (1991). Agronomic practices for the production of ethanol from sweet sorghum. Journal of Production Agriculture, 4: 619-625.
  • Maes, W. H. and Steppe, K. (2012). Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. Journal Experimental Botany, 63: 4671-4712.
  • Mahinda, A. J. (2014). Effect of drip irrigation on the production and economic returns of sorghum (Sorghum bicolor) in semi-arid areas of Tanzania (MSc. Thesis). University of Nairobi, Kenya.
  • Massacci, A., Battistelli, A. and Loreto, F. (1996). Effect of drought stress on photosynthetic characteristics, growth, and sugar accumulation of field-grown sweet sorghum. Australian Journal of Plant Physiology, 23: 331-340.
  • Mastrorilli, M., Campi, P., Palumbo, A., Navarro, F., Modugno, F. and Turci, V. (2011). Water Use Efficiency of Sorghum Cultivated for Energy in Mediterranean Environments. 19th European biomass conference and exhibition Proceedings of the 19th EU BC&E. June, P. 565-568 Berlin, Germany.
  • Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B. and Rakitin, V. Y. (1999). Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 106: 135-141.
  • Miller, A. N. and Ottman, M. J. (2012). Irrigation frequency effects on growth and ethanol yield in sweet sorghum. Agronomy Journal, 2 (1):60-70.
  • Moller, M., Alchanatis, V., Cohen, Y., Meron, M., Tsipris, J., Naor, A., Ostrovsky, V., Sprintsin, M. and Cohen, S. (2006). Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Journal of Experimental Botany, 58: 827-838.
  • Mullet, J., Morishige, D., Mc Cormick, R., Truong, S., Hilley, J., McKinley, B., Anderson, R., Olson, S. N. and Rooney, W. (2014). Energy Sorghum-A genetic model for the design of C4 grass bioenergy crops. Journal of Experimental Botany, 65(13): 3479-3489.
  • Mygdakos, E., Papanikolaou, C. and Sakellariou-Makrantonaki, M. (2009). Sorghum economics under different irrigation methods and water doses. New Medit, 8(4): 47-54.
  • Nielsen, D. C. (1990). Scheduling irrigations for soybeans with the crop water stress index (CWSI). Field Crops Research, 23 103–116.
  • Nielsen, D. C. (1994). Non water-stressed baselines for sunflowers. Agricultural Water Management, 26: 265-276.
  • O’Shaughnessy, S. A., Evett, S. R., Colaizzi, P. D. and Howell, T. A. (2011). Using radiation thermometry to evaluate crop water stress in soybean and cotton. Agricultural Water Management, 98:1523-1535.
  • O’Shaughnessy, S. A., Evett, S. R., Colaizzi, P. D. and Howell T. A. (2012). A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agricultural Water Management, 107: 122-132. OECD-FAO (2021). Agricultural Outlook 2021-2030. https://reliefweb.int/sites/reliefweb.int/files/resources/cb5332en.pdf (Access Date: 24.11.2021)
  • Olufayo, A. A., Baldy, C. and Ruelle, P. (1996). Sorghum yield, water use and canopy temperatures under different levels of irrigation. Agricultural Water Management, 30: 77-90.
  • Orta, A. H., Erdem, Y. and Erdem, T. (2003). Crop water stress index for watermelon. Scientia Horticulturae, 98(2): 121–130.
  • Payero, J. O, Neale, C. M. U. and Wright, J. L. (2005). Non-water-1 stressed baselines for calculating crop water stress index (CWSI) for alfalfa and tall fescue grass. Transactions of the ASAE, 48:653-661.
  • Payero, J. O. and Irmak, S. (2006). Variable upper and lower crop water stress index baselines for corn and soybean. Irrigation Science, 25: 21–32.
  • Polat, B. (2022). Determination of the effects of different lateral depth in subsurface drip irrigation system on bioethanol production together with growth of sorghum plant and simulation of moisture distribution in the soil profile with hydrus/2D model. (Ph.D. Thesis). Akdeniz University, The Institute of Science, Antalya, Turkey.
  • Prasad, V. B. R, Govindaraj, M., Djanaguiraman, M., Djalovic, I., Shailani, A., Rawat, N., Singla-Pareek, S. L., Pareek, A. and Prasad, P. V. V. (2021). Drought and high temperature stress in sorghum: Physiological, genetic, and molecular insights and breeding approaches. International Journal of Molecular Sciences, 22: 9826.
  • Reddy, B. V. S., Ramesh, S., Reddy, P., Ramaiah, B., Salimath, P. and Kachapur, R. (2005). Sweet sorghum potential alternate raw material for bioethanol and bioenergy. International Sorghum and Millets Newsletter, 46:79-86.
  • Rono, J. K., Cheruiyot, E. K., Othira, J. O. and Njuguna, V. W. (2018). Cane yield and juice volume determine ethanol yield in sweet sorghum (Sorghum bicolor L. Moench). International Journal of Applied Science, 1(2): 29-36.
  • Rostampour, M. F. (2013). Effect of irrigation regimes and polymer on dry matter, yield and several physiological traits of forage sorghum var. Speed feed. Africa Journal of Biotechnology, 12(51): 7074-7080.
  • Ru, C., Hu, X., Wang, W., Ran, H., Song, T. and Guo, Y. (2020). Evaluation of the crop water stress index as an indicator for the diagnosis of grapevine water deficiency in greenhouses. Horticulturae, 6: 864.
  • Sakellariou-Makrantonaki, M., Papalexis, D., Nakos, N. and Kalavrouziotis, I. K. (2007). Effects of modern irrigation methods on growth and energy production of sweet sorghum (var. Keller) on a dry year in central Greece. Agricultural Water Management, 90: 181–189.
  • Sakellariou-Makrantonaki, M., Papalexis, D., Nakos, N., Dassios, S., Chatzinikos, A., Papanikos, N. and Danalatos, N. (2006). Potential and Water-Limited Growth and Productivity of Fiber Sorghum in Central Greece Irrigated By Surface and Subsurface Drip Methods on a Rainy and a Dry Year. Proceedings of the Sixth International Conference of IASME/ WSEAS International Conference on Energy and Environmental Systems. 8-10 May, P 49-54, Chalkida, Greece.
  • Sammis, T. W., Riley, W. R. and Lugg, D. G. (1988). Crop water stress Index of pecans. Applied Engineering in Agriculture, 4(1): 39-45.
  • Sanchez, A. C., Subudhi, P. K., Rosenow, D. T. and Nguyen, H. T. (2002). Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Molecular Biology, 48: 713-726.
  • Sarkar, N., Ghosh, S. K., Bannerjee, S. and Aikat, K. (2012). Bioethanol production from agricultural wastes: an overview, Renewable Energy, 37: 19-27.
  • Sezen, S. M., Yazar, A., Dasgan, Y., Yucel, S., Akyıldız, A., Tekin, S. and Akhoundnejad, Y. (2014). Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying irrigation regimes. Agricultural Water Management, 143: 59-70.
  • Simbeye, D. S., Mkiramweni, M. E., Karaman, B. and Taskin, S. (2023). Plant water stress monitoring and control system. Smart Agricultural Technology, 3: 100066.
  • Smith, G. and Buxton, D. R. (1993). Temperate zone sweet sorghum ethanol production potential. Bioresource Technology, 43: 71-75.
  • Smith, W. K. (1978). Temperatures of desert plants: another perspective on the adaptability of leaf size. Science, 201: 614-616.
  • Suwarti, Efendi, R., Massinai, R. and Pabendon, M. B. (2018). Evaluation of sweet sorghum (Sorghum bicolor L. [Moench]) on several population density for bioethanol production. Earth and Environmental Science, 141: 012032.
  • Taghvaeian, S., Cha´vez, J. L., Bausch, W. C., DeJonge, K. C. and Trout, T. J. (2013). Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize. Irrigation Science, 32(1): 53-65.
  • Taghvaeian, S., Chávez, J. and Hansen, N. (2012). Infrared thermometry to estimate crop water stress index and water use of irrigated maize in northeastern Colorado. Remote Sensing, 4: 3619-3637.
  • Taghvaeian, S., Comas, L., Dejonge, K. C. and Trout, T. J. (2014). Conventional and simplified canopy temperature indices predict water stress in sunflower. Agricultural Water Management, 144: 69-80.
  • Tolk, J. A., Howell, T. A. and Miller, F. R. (2013). Yield component analysis of grain sorghum grown under water stress. Field Crops Research, 145: 44-51.
  • Vasilakoglou, I., Dhima, K., Karagiannidis, N. and Gatsis, T. (2011). Sweet sorghum productivity for biofuels under increased soil salinity and reduced irrigation. Field Crops Research, 120(1): 38-46.
  • Veysi, S., Naseri, A. A., Hamzeh, S. and Bartholomeus, H. A. (2017). Satellite based crop water stress index for irrigation scheduling in sugarcane fields. Agricultural Water Management, 189: 70-86.
  • Wang, L., Yu, Qiu, G., Zhang, X. and Chen, S. (2005). Application of a new method to evaluate crop water stress index. Irrigation Science, 24: 49-54.
  • Wani, S. P. (2012). Sorghum. In Crop Yield Response to Water Stress, FAO Irrigation and Drainage Paper 66, Eds: Steduto, P., Hsiao, T. C., Fereres, E. and Raes, D., Rome, Italy.
  • Wanjura, D. F. and Upchurch, D. R. (2000). Canopy temperature characterizations of corn and cotton water status. Transactions of the ASAE, 43: 867-875.
  • Wanjura, D. F., Hatfield, J. L. and Upchurch, D. R. (1990). Crop water stress index relationships with crop productivity. Irrigation Science, 11:93-99.
  • Xie, T. and Su, P. (2012). Canopy and leaf photosynthetic characteristics and water use efficiency of sweet sorghum under drought stress. Russian Journal of Plant Physiology, 59(2): 224-234.
  • Xu, J., Lv, Y., Liu, X., Dalson, T., Yang, S. and Wu, J. (2016). Diagnosing crop water stress of rice using infra-red thermal imager under water deficit condition. International Journal of Agriculture & Biology, 18: 565-572. Xu, W., Rosenow, D. T. and Nguyen, H. T. (2000). Stay grain trait in grain sorghum: relationship between visual rating and leaf chlorophyll concentration. Plant Breeding, 119: 365-367.
  • Yazar, A., Howell, T. A., Dusek, D. A. and Copeland, K. S. (1999). Evaluation of crop water stress index for LEPA irrigated corn. Irrigation Science, 18: 171-180.
  • Yetik, A. K. and Candoğan, B. N. (2023). Chlorophyll response to water stress and the potential of using crop water stress index in sugar beet farming. Sugar Tech, 25(1):57-68.
  • Yuan, G., Luo, Y., Sun, X. and Tang, D. (2004). Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain. Agricultural Water Management, 64: 29-40.
  • Zegada-Lizarazu W., Zatta Z. and Monti A. (2012). Water uptake efficiency and above- and belowground biomass development of sweet sorghum and maize under different water regimes. Plant and Soil, 351: 47-60.
  • Zhang, L., Zhang, H., Zhu, Q. and Niu, Y. (2023). Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value. Agricultural Water Management, 285: 108349.
There are 112 citations in total.

Details

Primary Language English
Subjects Irrigation Systems
Journal Section Articles
Authors

Begüm Polat 0000-0001-6493-4118

Köksal Aydinşakir 0000-0003-0225-7646

Dursun Büyüktaş 0000-0002-9130-9112

Early Pub Date December 13, 2024
Publication Date December 23, 2024
Submission Date December 12, 2023
Acceptance Date July 6, 2024
Published in Issue Year 2024 Volume: 21 Issue: 5

Cite

APA Polat, B., Aydinşakir, K., & Büyüktaş, D. (2024). Assessment of Crop Water Stress Index (CWSI) of Sorghum Irrigated by Surface and Subsurface Drip Irrigation Methods under Mediterranean Conditions. Tekirdağ Ziraat Fakültesi Dergisi, 21(5), 1130-1147. https://doi.org/10.33462/jotaf.1403719
AMA Polat B, Aydinşakir K, Büyüktaş D. Assessment of Crop Water Stress Index (CWSI) of Sorghum Irrigated by Surface and Subsurface Drip Irrigation Methods under Mediterranean Conditions. JOTAF. December 2024;21(5):1130-1147. doi:10.33462/jotaf.1403719
Chicago Polat, Begüm, Köksal Aydinşakir, and Dursun Büyüktaş. “Assessment of Crop Water Stress Index (CWSI) of Sorghum Irrigated by Surface and Subsurface Drip Irrigation Methods under Mediterranean Conditions”. Tekirdağ Ziraat Fakültesi Dergisi 21, no. 5 (December 2024): 1130-47. https://doi.org/10.33462/jotaf.1403719.
EndNote Polat B, Aydinşakir K, Büyüktaş D (December 1, 2024) Assessment of Crop Water Stress Index (CWSI) of Sorghum Irrigated by Surface and Subsurface Drip Irrigation Methods under Mediterranean Conditions. Tekirdağ Ziraat Fakültesi Dergisi 21 5 1130–1147.
IEEE B. Polat, K. Aydinşakir, and D. Büyüktaş, “Assessment of Crop Water Stress Index (CWSI) of Sorghum Irrigated by Surface and Subsurface Drip Irrigation Methods under Mediterranean Conditions”, JOTAF, vol. 21, no. 5, pp. 1130–1147, 2024, doi: 10.33462/jotaf.1403719.
ISNAD Polat, Begüm et al. “Assessment of Crop Water Stress Index (CWSI) of Sorghum Irrigated by Surface and Subsurface Drip Irrigation Methods under Mediterranean Conditions”. Tekirdağ Ziraat Fakültesi Dergisi 21/5 (December 2024), 1130-1147. https://doi.org/10.33462/jotaf.1403719.
JAMA Polat B, Aydinşakir K, Büyüktaş D. Assessment of Crop Water Stress Index (CWSI) of Sorghum Irrigated by Surface and Subsurface Drip Irrigation Methods under Mediterranean Conditions. JOTAF. 2024;21:1130–1147.
MLA Polat, Begüm et al. “Assessment of Crop Water Stress Index (CWSI) of Sorghum Irrigated by Surface and Subsurface Drip Irrigation Methods under Mediterranean Conditions”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 21, no. 5, 2024, pp. 1130-47, doi:10.33462/jotaf.1403719.
Vancouver Polat B, Aydinşakir K, Büyüktaş D. Assessment of Crop Water Stress Index (CWSI) of Sorghum Irrigated by Surface and Subsurface Drip Irrigation Methods under Mediterranean Conditions. JOTAF. 2024;21(5):1130-47.