Research Article
BibTex RIS Cite

From Practice to Science: Assessment Soil Nutrient Status Using “Minus One Element Technique (MOET)” for Early Growth of Maize

Year 2025, Volume: 22 Issue: 1, 35 - 45
https://doi.org/10.33462/jotaf.1357615

Abstract

Soil nutrient deficiency will influence maize growth, so it is necessary to add nutrients based on the fertility status of the soil. One way to find out the nutrient soil status using a simple method is using the minus one element technique (MOET). The minus one element technique (MOET) determines which element is the limiting factor. This study was carried out to confirm the nutrient soil status using the minus one element technique (MOET) with the early growth of maize as the indicator. The research was conducted in greenhouse, Polytechnic of Lamandau, Central Borneo, Indonesia, at an altitude of 50 m above sea level. The research used a non-factorial design arranged in a completely randomized block design and five fertilizer treatments based on the minus one element technique consisting of control (without fertilization), PK, NP, NK, and NPK with three replications. The results showed that the deficiency of nitrogen, potassium, and phosphorus reduced the growth of maize, leaf greenness, photosynthetic rate, and especially the total dry weight of the plant. The dry weight of maize roots decreased by 18.85% - 75.47% when N, P, and K fertilizer were not applied. Then the decrease in photosynthesis rate ranged from 18.23% to 46.21% when N, P, and K fertilizer were not applied. The low of photosynthesis rates resulted in the accumulation of plant dry weight was hampered, and there was a decrease of 8.00% -74.43%. The results of the evaluation of fertility status are based on the results of the relative dry weight of the plant, which was <80% in the PK and NP fertilization treatments, meaning that nitrogen and potassium were deficient in the soil.

Ethical Statement

There is no need to obtain permission from the ethics committee for this study.

Supporting Institution

to LPPM Universitas Diponegoro and Professor Sugiharto

Thanks

Acknowledgments to LPPM Universitas Diponegoro and Professor Sugiharto for their suggestions and directions in the research and writing of this article.

References

  • Aghdam, M. (2023). The effect of stopping irrigation, potassium and low consumption elements on growth indicators of fodder corn. Nutrition and Food Processing, 6(3): 01-07. https://doi.org/10.31579/2637-8914/126
  • Ahmadu, R., Law-Ogbomo, K. E. and Ogedegbe, S. A. (2020). Comparative effects of some soil amendments on the agronomic performance of maize varieties in a low fertile soil. Notulae Scientia Biologicae, 12(1): 189-195. https://doi.org/10.15835/nsb12110529
  • Akgül, F. and Akgül, R. (2022). Combined effect of nitrogen and phosphorus on growth and biochemical composition of Tetradesmus obliquus (turpin) m.j. wynne. International Journal of Secondary Metabolite, 9(4): 525-537. https://doi.org/10.21448/ijsm.1102592
  • Aliyu, K. T., Huising, J., Kamara, A. Y., Jibrin J. M., Mohammed, I. B., Nziguheba, G., Adam, A. M. and Vanlauwe, B. (2021). Understanding nutrient imbalances in maize (Zea mays L.) using the diagnosis and recommendation integrated system (DRIS) approach in the Maize belt of Nigeria. Scientifc Reports, 11: 16018. https://doi.org/10.1038/s41598-021-95172-7
  • Amanullah, Iqbal, A., Irfanullah and Hidayat, Z. (2016). Potassium management for improving growth and grain yield of maize (Zea mays L.) under moisture stress condition. Scientific Reports, 6(34627): 1-12. https://doi.org/10.1038/srep34627.
  • Argenta, G., Regis Ferreira da Silva, P. and Sangoi, L. (2004). Leaf relative chlorophyll content as an indicator to predict nitrogen fertilization in maize. Ciencia Rural, 34: 1379–1387.
  • Attia, H., Rebah, F., Ouhibi, C., Saleh, M. A., Althobaiti, A. T., Alamer, K. H., Ben Nasri, M. and Lachaâl, M. (2022). Effect of potassium deficiency on physiological responses and anatomical structure of basil Ocimum basilicum L. Biology, 11: 1557. https://doi.org/10.3390/biology11111557
  • Azhiri-Sigari, T., Gines, H. C., Casimero, M. C. and Sebastian, L. S. (2003). Soil fertility status of Philrice Ces Ricefields in Maligaya, Nueva Ecija by soil analysis & minus-one-element technique (MOET). Philippine Journal of Crop Science, 28(3): 31-47.
  • Basal, O. and Szabo, A. (2020). Yield and quality of two soybean cultivars in response to drought and N fertilization. Journal of Tekirdag Agricultural Faculty, 17(2): 203-210.
  • Berge, H. F. M., Hijbeekb, R., van Loonb, M. P., Rurindac, J., Tesfayed, K., Zingorec, S., Craufurde, P., van Heerwaardenb, J., Brentrupf, F., Schrödera, J. J., Boogaardg, H. L., de Grootg, H. L. E. and van Ittersum, M. K. (2019). Maize crop nutrient input requirements for food security in sub-Saharan Africa. Global Food Security, 23: 9-21. https://doi.org/10.1016/j.gfs.2019.02.001
  • Cagasan, U. A., Libre, M. J. P., Santiago, D. A., Cantoneros, J. A., Tumaca, C. M., Pablo, A. and Hamora, G. A. (2020) Assessment on the nutrient status of lowland rice soil using minus one element technique (MOET). Eurasian Journal of Agricultural Research, 4(1): 56-63.
  • Carvalhais, L., Dennis, P., Fan, B., Fedoseyenko, D., Kierul, K., Becker, A. and Borriss, R. (2013). Linking plant nutritional status to plant-microbe interactions. Plos One, 8(7): e68555. https://doi.org/10.1371/journal.pone.0068555
  • Cendrero-Mateo, M. P., Moran, M. S., Papuga, S. A., Thorp, K. R., Alonso, L., Moreno, J., Ponce-Campos, G., Rascher, U. and Wang, G. (2015). Plant chlorophyll fluorescence: Active and passive measurements at canopy and leaf scales with different nitrogen treatments. Journal of Experimental Botany, 67: 275–286.
  • Chen, J., Liu, L., Wang, Z., Zhang, Y., Sun, H., Song, S., Bai, Z., Lu, Z. and Li, C. (2020). Nitrogen fertilization increases root growth and coordinates the root–shoot relationship in cotton. Frontiers in Plant Science, 11(880): 1-13. https://doi.org/10.3389/fpls.2020.00880.
  • Dawar, K., Khan, A., Mian, I. A., Khan, B., Ali, S. and Ahmad, S. (2022). Maize productivity and soil nutrients variations by the application of vermicompost and biochar. PLoS ONE, 17(5): e0267483. https://doi.org/10.1371/journal.pone.0267483
  • Ding, L., Wang, K. J., Jiang, J. M., Biswas, D. K., Xu, H., LI, L. F. and LI, Y. H. (2005). Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Annals of Botany, 96(5): 925–930. https://doi.org/10.1093/aob/mci244
  • Du, Q., Zhao, X., Jiang, C., Wang, X., Han, Y., Wang, J. and Yu, H. (2017). Effect of potassium deficiency on root growth and nutrient uptake in maize (Zea mays L.). Agricultural Sciences, 08(11): 1263-1277. https://doi.org/10.4236/as.2017.811091
  • Descalsota, J. P., Mamaril, C. P., San Valentin, G. O., Corton, T. M. and Obien, S. R. (2000). Biological Method for Diagnosis of Nutrient Limitations and Balancing Fertilizer Application to Lowland Rice Soils. Bureau of Agricultural Research 12th National Research Symposium, Oct 4-5.
  • Dwyer, L. M., Ma, B. L., Stewart, D. W., Hayhoe, H. N. and Balchin, D. (1996). Root mass distribution under conventional and conservation tillage. Canadian Journal of Soil Science, 76: 23–28.
  • El-Sheekh, M. M., Galal, H. R. and Mousa, A. S. H. (2024). Impact of macronutrients and salinity stress on biomass and biochemical constituents in Monoraphidium braunii to enhance biodiesel production. Scientific Reports, 14: 2725. https://doi.org/10.1038/s41598-024-53216-8.
  • FAO (2022). FAOSTAT: Production: Crops and livestock products. In: FAO. Rome. Cited December 2022. https://www.fao.org/faostat/en/#data/QCL
  • Guo, S., Liu, Z., Zhou, Z., Lu, T., Chen, S., He, M., Zeng, X., Chen, K., Yu, H. and Shangguan, Y. (2022). Root system architecture differences of maize cultivars affect yield and nitrogen accumulation in southwest china. Agriculture, 12 (209): 1-14. https://doi.org/10.3390/agriculture12020209
  • Guo, S. (2023). Dynamic transcriptome analysis unravels key regulatory genes of maize root growth and development in response to potassium deficiency. Planta, 258: 99 https://doi.org/10.1007/s00425-023-04260-7.
  • Han, Q. M. (2011). Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Tree Physiology, 31: 976–984.
  • Haque, M. M., Sha, A. L., Biswas, J. C., Islam, M. R., Islam, A. and Naher, U. A. (2019). Effect of missing nutrient elements on grain yield of wet season rice in Bangladesh. American Journal of Plant Sciences, 10: 631-639. https://doi.org/10.4236/ajps.2019.104046
  • Hasanuzzaman, M., Bhuyan, M. H. M. B., Nahar, K., Hossain, M. S., Mahmud, J. A., Hossen, M. S., Masud, A. A. C. and Moumita, Fujita, M. (2018). Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8: 31. https://doi.org/10.3390/agronomy8030031
  • Hiratsuka, S., Suzuki, M., Nishimura, H. and Nada, K. (2015). Fruit photosynthesis in Satsuma mandarin. Plant Science, 241: 65–69.
  • Jezek, M., Geilfus, C. M., Bayer, A. and Mühling, K. H. (2015). Photosynthetic capacity, nutrient status, and growth of maize (Zea mays L.) upon MgSO4 leaf-application. Frontiers in Plant Science, 5: 781. https://doi.org/10.3389/fpls.2014.00781
  • Kavanová, M., Lattanzi, F. and Schnyder, H. (2008). Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post‐mitotic growth rates. Plant Cell & Environment, 31(6): 727-737. https://doi.org/10.1111/j.1365-3040.2008.01787.x
  • Kandel, B. P. (2020). SPAD value varies with age and leaf of maize plant and its relationship with grain yield. BMC Research Notes, 13: 475. https://doi.org/10.1186/s13104-020-05324-7
  • Kandil, E. E., Abdelsalam, N. R., Mansour, M. A., Ali, H. M. and Siddiqui, M. H. (2020). Potentials of organic manure and potassium forms on maize (Zea mays L.) growth and production. Scientific Reports, 10(8752): 1-11. https://doi.org/10.1038/s41598-020-65749-9
  • Khaleeq, K. (2023). Response of maize (Zea mays L.) to the soil application of phosphorus fertilizer. Journal of Agriculture and Ecology, 17: 90-93. https://doi.org/10.58628/jae-2317-316
  • Khan, F., Siddique, A. B., Shabala, S., Zhou, M. and Zhao, C. (2023). Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants, 12: 2861. https://doi.org/10.3390/plants12152861
  • Law-Ogbomo, K. E. and Law-Ogbomo, J. E. (2009). The performance of Zea mays as influenced by NPK fertilizer application. Notulae Scientia Biologicae, 1(1): 59-62. https://doi.org/10.15835/nsb113459.
  • Law-Ogbomo, K. E. and Ekunwe, P. A. (2011). Economic yield and profitability of maize/melon intercrop as influenced by inorganic fertilizer application in humid forest ultisol. Notulae Scientia Biologicae, 3(4): 66–70. https://doi.org/10.15835/nsb346309
  • Li, L., Li, Q., Davis, K., Patterson, C., Oo, S., Liu, W. and Zhang, B. (2021). Response of root growth and development to nitrogen and potassium deficiency as well as microrna-mediated mechanism in peanut (Arachis hypogaea L.). Frontiers in Plant Science, 12: 695234. https://doi.org/10.3389/fpls.2021.695234
  • Liu, X., Yin, C., Li, X., Jiang, W. and Xu, S. (2020). Transcription strategies related to photosynthesis and nitrogen metabolism of wheat in response to nitrogen deficiency. BMC Plant Biology, 20: 448. https://doi.org/10.1186/s12870-020-02662-3
  • Magahud, J. C., Dalumpines, S. L. P., Lincuna, A. E. and Estoy, G. F. (2019). Growth of rice, PSB Rc 82, and status of nutrients in lowland Agusan soil under alternate wetting and drying and minus-one-element conditions. Philippine Science Letters, 12(2): 107-121.
  • Mardhiana, M., Apriyani, D., Adiwena, M. and Pradana, A. P. (2021). Growth and yield performance of maize at red-yellow podzolic acid soil after oil palm empty fruit bunches compost and rice husk charcoal application. Journal of Degraded Mining Lands Management, 8(2): 2653-2660. https://doi.org/10.15243/jdmlm.2021.082.2653
  • Meng, W., Zhang, A., Li, H., Tang, Z. and Chen, X. (2015). Growth and physiological response to nitrogen deficiency and re-supply in leaf-vegetable sweetpotato (Ipomoea batatas Lam). Hortscience, 50(5): 754-758. https://doi.org/10.21273/hortsci.50.5.754
  • Mu, X., Chen, Q., Chen, F., Yuan, L. and Mi, G. (2017). A rna-seq analysis of the response of photosynthetic system to low nitrogen supply in maize leaf. International Journal of Molecular Sciences, 18(12): 2624. https://doi.org/10.3390/ijms18122624
  • Mujiyo, M., Puspito, G. J., Suntoro, S., Rahayu, R. and Purwanto, P. (2022). The effect of change in function from paddy field to dry land on soil fertility index. Environment and Natural Resources Journal, 20(1): 42-50. https://doi.org/10.32526/ennrj/20/202100127
  • Nasseri, A. (2021). Long-term water productivity of maize (Zea mays L.) from limited irrigation conditions under moderate semi-arid environment. Journal of Tekirdag Agricultural Faculty, 18(3): 400-410.
  • O’Connell, C. and Osmond, D. L. (2022). Why soil testing is not enough: A mixed methods study of farmer nutrient management decision-making among U.S. producers. Journal of Environmental Management, 314: 115017. https://doi.org/10.1016/j.jenvman.2022.115027
  • Olszewski, J., Makowska, M., Pszczółkowska, A., Okorski, A. and Bieniaszewski, T. (2014). The effect of nitrogen fertilization on flag leaf and ear photosynthesis and grain yield of spring wheat. Plant Soil and Environment, 60(12): 531-536. https://doi.org/10.17221/880/2013-pse
  • Öner, N. and Demirkıran, A. R. (2023). The effect of decreasing or increasing of the fertilizer amount on sunflower yield, nutrient contents and fertilizer costs. Journal of Agriculture, 6(2): 155-164. https://doi.org/10.46876/ja.1400564
  • Onofri, A. and Pannacci, E. (2014). Spreadsheet tools for biometry classes in crop science programmes. Communications in Biometry and Crop Science, 9(2): 3–13.
  • Osaki, M., Shinano, T., Matsumoto, M., Ushiki, J. and Shinano, M. M. (1995). Productivity of high-yielding crops. V. Root growth and specific absorption rate of nitrogen. Soil Science and Plant Nutrition, 41: 635–647.
  • Putra, F. P. and Ismoyojati, R. (2021). Monitoring of maize root growth on N, P, and K fertiliztion using rhizotron. Jurnal Ilmiah Pertanian, 17(2): 74-79. https://doi.org/10.31849/jip.v17i2.5748
  • Qu, C., Liu, C., Ze, Y., Gong, X., Hong, M., Wang, L. and Hong, F. (2011). Inhibition of nitrogen and photosynthetic carbon assimilation of maize seedlings by exposure to a combination of salt stress and potassium-deficient stress. Biological Trace Element Research, 144(1-3): 1159-1174. https://doi.org/10.1007/s12011-011-9037-6
  • Rey-Caramés, C., Tardaguila, J., Sanz-Garcia, A., Chica-Olmo, M. and Diago, M. P. (2016). Quantifying spatio-temporal variation of leaf chlorophyll and nitrogen contents in vineyards. Biosystems Engineering, 150: 201–213.
  • Rostami, M., Koocheki, A. R., Mahallati, M. N. and Kafi, M. (2008). Evaluation of chlorophyll mater (SPAD) data for prediction of nitrogen status in corn (Zea mays L.). American Eurasian Journal of Agricultural and Environmental Sciences, 3: 79–85.
  • Saito, A., Tanabata, S., Tanabata, T., Tajima, S., Ueno, M., Ishikawa, S., Ohtake, N., Sueyoshi, K. and Ohyama, T. (2014). Effect of nitrate on nodule and root growth of soybean (Glycine max (L.) merr.). International Journal of Molecular Sciences, 15(3): 4464-4480. https://doi.org/10.3390/ijms15034464
  • Salih, R., Abdan, K. and Wayayok, A. (2014). Growth responses of two kenaf varieties (Hibiscus cannabinus L.) applied by different levels of potassium, boron and zinc. Journal of Agricultural Science, 6(9): 37-45. https://doi.org/10.5539/jas.v6n9p37
  • Shah, S. H., Houborg, R. and McCabe, M. F. (2017). Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy, 7: 61.
  • Shiferaw, B., Prasanna, B.M., Hellin, J. and Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3: 307–327. https://doi.org/10.1007/s12571-011-0140-5
  • Sobhana, M., Vallabhaneni, R., Vasireddy, T. and Polavarpu, D. (2022). Deep ensemble mobile application for recommendation of fertilizer based on nutrient deficiency in rice plants using transfer learning models. International Journal of Interactive Mobile Technologies, 16(16): 100-112. https://doi.org/10.3991/ijim.v16i16.31497
  • Song, J. (2023). How to diagnose potassium abundance and deficiency in tomato leaves at the early cultivation stage. Horticulturae, 9(11): 1225. https://doi.org/10.3390/horticulturae9111225
  • Studer, C., Hu, Y. and Schmidhalter, U. (2017). Interactive effects of N-, P- and K-nutrition and drought stress on the development of maize seedlings. Agriculture, 7: 90. https://doi.org/10.3390/agriculture7110090
  • Thornburg, T. E., Liu, J., Li, Q., Xue, H., Wang, G., Li, L., Fontana, J. E., Davis, K. E., Liu, W., Zhang, B., Zhang, Z., Liu, M. and Pan, X. (2020). Potassium deficiency significantly affected plant growth and development as well as microRNA-Mediated mechanism in wheat (Triticum aestivum L.). Frontiers in Plant Science, 11:1219. https://doi.org/10.3389/fpls.2020.01219
  • Uddling, J., Gelang-Alfredsson, J., Piikki, K. and Pleijel, H. (2007). Evaluation of the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research, 91: 37–46.
  • Veazie, P., Cockson, P., Henry, J., Perkins-Veazie, P. and Whipker, B. (2020). Characterization of nutrient disorders and impacts on chlorophyll and anthocyanin concentration of Brassica rapa var. Chinensis. Agriculture, 10: 461. https://doi.org/10.3390/agriculture10100461
  • Wang, Y., Zhang, X., Chen, J., Chen, A., Wang, L., Guo, X., Niu, Y., Liu, S., Mi, G. and Gao, Q. (2019). Reducing basal nitrogen rate to improve maize seedling growth, water and nitrogen use efficiencies under drought stress by optimizing root morphology and distribution. Agricultural Water Management, 212: 328-337. https://doi.org/10.1016/j.agwat.2018.09.010
  • Wang, Y. and Wu, W.H. (2013). Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 64: 451–476.
  • Wu, Y., Qiang, L., Rong, J., Wei, C., Xiao-lin, L., Fan-lei, K., Yong-pei, K., Haichun, S. and Ji-chao, Y. (2019). Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low nitrogen tolerance. Journal of Integrative Agriculture, 18(6): 1246–1256. https://doi.org/10.1016/S2095-3119(18)62030-1
  • Yang, J. T., Schneider, H. M., Brown, K. M. and Lynch, J. P. (2019). Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific. Journal of Experimental Botany, 70(19): 5311-5325. https://doi.org/10.1093/jxb/erz293
  • Yessoufou, M. W. I. A., Tovihoudji, P. G., Zakari, S., Adjogboto, A., Djenontin, A. J. and Irenikatche Akponikpe, P. B. I. (2023). Hill-placement of manure and fertilizer for improving maize nutrient- and water-use efficiencies in the northern Benin. Heliyon, 9:e17823. https://doi.org/10.1016/j.heliyon.2023.e17823.
  • Yin, Y., Ying, H., Zheng, H., Zhang, Q., Xue, Y. and Cui, Z. (2019). Estimation of NPK requirements for rice production in diverse Chinese environments under optimal fertilization rates. Agricultural and Forest Meteorology 279: 107756. https://doi.org/10.1016/j.agrformet.2019.107756.
  • Yuan, Z., Cao, Q., Zhang, K., Ata-Ul-Karim, S.T., Tian, Y., Zhu, Y., Cao, W. and Liu, X. (2016). Optimal Leaf Positions for SPAD Meter Measurement in Rice. Frontiers in Plant Science, 7:719. https://doi.org/10.3389/fpls.2016.00719
  • Zhang, J., Blackmer, A., Blackmer, T. and Kyveryga, P. (2010). Fertilizer bands affect early growth of corn. Communications in Soil Science and Plant Analysis, 41(11): 1306-1314. https://doi.org/10.1080/00103621003759312
  • Zhao, L., Li, K., Wang, Q., Song, X., Su, H., Xie, B. and Zhang, Y. (2017). Nitrogen starvation impacts the photosynthetic performance of Porphyridium cruentum as revealed by chlorophyll a fluorescence. Scientific Reports, 7(1): 8542. https://doi.org/10.1038/s41598-017-08428-6
  • Živčák, M., Olsaovska, K., Slamka, P., Galambošová, J., Rataj, V., Shao, H., Brestič, M. (2014). Measurements of chlorophyll fluorescence in different leaf positions may detect nitrogen deficiency in wheat. Zemdirbyste-Agriculture, 101(4): 437-444. https://doi.org/10.13080/z-a.2014.101.056.

From Practice to Science: Assessment Soil Nutrient Status Using “Minus One Element Technique (MOET)” for Early Growth of Maize

Year 2025, Volume: 22 Issue: 1, 35 - 45
https://doi.org/10.33462/jotaf.1357615

Abstract

Soil nutrient deficiency will influence maize growth, so it is necessary to add nutrients based on the fertility status of the soil. One way to find out the nutrient soil status using a simple method is using the minus one element technique (MOET). The minus one element technique (MOET) determines which element is the limiting factor. This study was carried out to confirm the nutrient soil status using the minus one element technique (MOET) with the early growth of maize as the indicator. The research was conducted in greenhouse, Polytechnic of Lamandau, Central Borneo, Indonesia, at an altitude of 50 m above sea level. The research used a non-factorial design arranged in a completely randomized block design and five fertilizer treatments based on the minus one element technique consisting of control (without fertilization), PK, NP, NK, and NPK with three replications. The results showed that the deficiency of nitrogen, potassium, and phosphorus reduced the growth of maize, leaf greenness, photosynthetic rate, and especially the total dry weight of the plant. The dry weight of maize roots decreased by 18.85% - 75.47% when N, P, and K fertilizer were not applied. Then the decrease in photosynthesis rate ranged from 18.23% to 46.21% when N, P, and K fertilizer were not applied. The low of photosynthesis rates resulted in the accumulation of plant dry weight was hampered, and there was a decrease of 8.00% -74.43%. The results of the evaluation of fertility status are based on the results of the relative dry weight of the plant, which was <80% in the PK and NP fertilization treatments, meaning that nitrogen and potassium were deficient in the soil.

Ethical Statement

There is no need to obtain permission from the ethics committee for this study.

Thanks

Acknowledgments to LPPM Universitas Diponegoro and Professor Sugiharto for their suggestions and directions in the research and writing of this article.

References

  • Aghdam, M. (2023). The effect of stopping irrigation, potassium and low consumption elements on growth indicators of fodder corn. Nutrition and Food Processing, 6(3): 01-07. https://doi.org/10.31579/2637-8914/126
  • Ahmadu, R., Law-Ogbomo, K. E. and Ogedegbe, S. A. (2020). Comparative effects of some soil amendments on the agronomic performance of maize varieties in a low fertile soil. Notulae Scientia Biologicae, 12(1): 189-195. https://doi.org/10.15835/nsb12110529
  • Akgül, F. and Akgül, R. (2022). Combined effect of nitrogen and phosphorus on growth and biochemical composition of Tetradesmus obliquus (turpin) m.j. wynne. International Journal of Secondary Metabolite, 9(4): 525-537. https://doi.org/10.21448/ijsm.1102592
  • Aliyu, K. T., Huising, J., Kamara, A. Y., Jibrin J. M., Mohammed, I. B., Nziguheba, G., Adam, A. M. and Vanlauwe, B. (2021). Understanding nutrient imbalances in maize (Zea mays L.) using the diagnosis and recommendation integrated system (DRIS) approach in the Maize belt of Nigeria. Scientifc Reports, 11: 16018. https://doi.org/10.1038/s41598-021-95172-7
  • Amanullah, Iqbal, A., Irfanullah and Hidayat, Z. (2016). Potassium management for improving growth and grain yield of maize (Zea mays L.) under moisture stress condition. Scientific Reports, 6(34627): 1-12. https://doi.org/10.1038/srep34627.
  • Argenta, G., Regis Ferreira da Silva, P. and Sangoi, L. (2004). Leaf relative chlorophyll content as an indicator to predict nitrogen fertilization in maize. Ciencia Rural, 34: 1379–1387.
  • Attia, H., Rebah, F., Ouhibi, C., Saleh, M. A., Althobaiti, A. T., Alamer, K. H., Ben Nasri, M. and Lachaâl, M. (2022). Effect of potassium deficiency on physiological responses and anatomical structure of basil Ocimum basilicum L. Biology, 11: 1557. https://doi.org/10.3390/biology11111557
  • Azhiri-Sigari, T., Gines, H. C., Casimero, M. C. and Sebastian, L. S. (2003). Soil fertility status of Philrice Ces Ricefields in Maligaya, Nueva Ecija by soil analysis & minus-one-element technique (MOET). Philippine Journal of Crop Science, 28(3): 31-47.
  • Basal, O. and Szabo, A. (2020). Yield and quality of two soybean cultivars in response to drought and N fertilization. Journal of Tekirdag Agricultural Faculty, 17(2): 203-210.
  • Berge, H. F. M., Hijbeekb, R., van Loonb, M. P., Rurindac, J., Tesfayed, K., Zingorec, S., Craufurde, P., van Heerwaardenb, J., Brentrupf, F., Schrödera, J. J., Boogaardg, H. L., de Grootg, H. L. E. and van Ittersum, M. K. (2019). Maize crop nutrient input requirements for food security in sub-Saharan Africa. Global Food Security, 23: 9-21. https://doi.org/10.1016/j.gfs.2019.02.001
  • Cagasan, U. A., Libre, M. J. P., Santiago, D. A., Cantoneros, J. A., Tumaca, C. M., Pablo, A. and Hamora, G. A. (2020) Assessment on the nutrient status of lowland rice soil using minus one element technique (MOET). Eurasian Journal of Agricultural Research, 4(1): 56-63.
  • Carvalhais, L., Dennis, P., Fan, B., Fedoseyenko, D., Kierul, K., Becker, A. and Borriss, R. (2013). Linking plant nutritional status to plant-microbe interactions. Plos One, 8(7): e68555. https://doi.org/10.1371/journal.pone.0068555
  • Cendrero-Mateo, M. P., Moran, M. S., Papuga, S. A., Thorp, K. R., Alonso, L., Moreno, J., Ponce-Campos, G., Rascher, U. and Wang, G. (2015). Plant chlorophyll fluorescence: Active and passive measurements at canopy and leaf scales with different nitrogen treatments. Journal of Experimental Botany, 67: 275–286.
  • Chen, J., Liu, L., Wang, Z., Zhang, Y., Sun, H., Song, S., Bai, Z., Lu, Z. and Li, C. (2020). Nitrogen fertilization increases root growth and coordinates the root–shoot relationship in cotton. Frontiers in Plant Science, 11(880): 1-13. https://doi.org/10.3389/fpls.2020.00880.
  • Dawar, K., Khan, A., Mian, I. A., Khan, B., Ali, S. and Ahmad, S. (2022). Maize productivity and soil nutrients variations by the application of vermicompost and biochar. PLoS ONE, 17(5): e0267483. https://doi.org/10.1371/journal.pone.0267483
  • Ding, L., Wang, K. J., Jiang, J. M., Biswas, D. K., Xu, H., LI, L. F. and LI, Y. H. (2005). Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Annals of Botany, 96(5): 925–930. https://doi.org/10.1093/aob/mci244
  • Du, Q., Zhao, X., Jiang, C., Wang, X., Han, Y., Wang, J. and Yu, H. (2017). Effect of potassium deficiency on root growth and nutrient uptake in maize (Zea mays L.). Agricultural Sciences, 08(11): 1263-1277. https://doi.org/10.4236/as.2017.811091
  • Descalsota, J. P., Mamaril, C. P., San Valentin, G. O., Corton, T. M. and Obien, S. R. (2000). Biological Method for Diagnosis of Nutrient Limitations and Balancing Fertilizer Application to Lowland Rice Soils. Bureau of Agricultural Research 12th National Research Symposium, Oct 4-5.
  • Dwyer, L. M., Ma, B. L., Stewart, D. W., Hayhoe, H. N. and Balchin, D. (1996). Root mass distribution under conventional and conservation tillage. Canadian Journal of Soil Science, 76: 23–28.
  • El-Sheekh, M. M., Galal, H. R. and Mousa, A. S. H. (2024). Impact of macronutrients and salinity stress on biomass and biochemical constituents in Monoraphidium braunii to enhance biodiesel production. Scientific Reports, 14: 2725. https://doi.org/10.1038/s41598-024-53216-8.
  • FAO (2022). FAOSTAT: Production: Crops and livestock products. In: FAO. Rome. Cited December 2022. https://www.fao.org/faostat/en/#data/QCL
  • Guo, S., Liu, Z., Zhou, Z., Lu, T., Chen, S., He, M., Zeng, X., Chen, K., Yu, H. and Shangguan, Y. (2022). Root system architecture differences of maize cultivars affect yield and nitrogen accumulation in southwest china. Agriculture, 12 (209): 1-14. https://doi.org/10.3390/agriculture12020209
  • Guo, S. (2023). Dynamic transcriptome analysis unravels key regulatory genes of maize root growth and development in response to potassium deficiency. Planta, 258: 99 https://doi.org/10.1007/s00425-023-04260-7.
  • Han, Q. M. (2011). Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Tree Physiology, 31: 976–984.
  • Haque, M. M., Sha, A. L., Biswas, J. C., Islam, M. R., Islam, A. and Naher, U. A. (2019). Effect of missing nutrient elements on grain yield of wet season rice in Bangladesh. American Journal of Plant Sciences, 10: 631-639. https://doi.org/10.4236/ajps.2019.104046
  • Hasanuzzaman, M., Bhuyan, M. H. M. B., Nahar, K., Hossain, M. S., Mahmud, J. A., Hossen, M. S., Masud, A. A. C. and Moumita, Fujita, M. (2018). Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8: 31. https://doi.org/10.3390/agronomy8030031
  • Hiratsuka, S., Suzuki, M., Nishimura, H. and Nada, K. (2015). Fruit photosynthesis in Satsuma mandarin. Plant Science, 241: 65–69.
  • Jezek, M., Geilfus, C. M., Bayer, A. and Mühling, K. H. (2015). Photosynthetic capacity, nutrient status, and growth of maize (Zea mays L.) upon MgSO4 leaf-application. Frontiers in Plant Science, 5: 781. https://doi.org/10.3389/fpls.2014.00781
  • Kavanová, M., Lattanzi, F. and Schnyder, H. (2008). Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post‐mitotic growth rates. Plant Cell & Environment, 31(6): 727-737. https://doi.org/10.1111/j.1365-3040.2008.01787.x
  • Kandel, B. P. (2020). SPAD value varies with age and leaf of maize plant and its relationship with grain yield. BMC Research Notes, 13: 475. https://doi.org/10.1186/s13104-020-05324-7
  • Kandil, E. E., Abdelsalam, N. R., Mansour, M. A., Ali, H. M. and Siddiqui, M. H. (2020). Potentials of organic manure and potassium forms on maize (Zea mays L.) growth and production. Scientific Reports, 10(8752): 1-11. https://doi.org/10.1038/s41598-020-65749-9
  • Khaleeq, K. (2023). Response of maize (Zea mays L.) to the soil application of phosphorus fertilizer. Journal of Agriculture and Ecology, 17: 90-93. https://doi.org/10.58628/jae-2317-316
  • Khan, F., Siddique, A. B., Shabala, S., Zhou, M. and Zhao, C. (2023). Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants, 12: 2861. https://doi.org/10.3390/plants12152861
  • Law-Ogbomo, K. E. and Law-Ogbomo, J. E. (2009). The performance of Zea mays as influenced by NPK fertilizer application. Notulae Scientia Biologicae, 1(1): 59-62. https://doi.org/10.15835/nsb113459.
  • Law-Ogbomo, K. E. and Ekunwe, P. A. (2011). Economic yield and profitability of maize/melon intercrop as influenced by inorganic fertilizer application in humid forest ultisol. Notulae Scientia Biologicae, 3(4): 66–70. https://doi.org/10.15835/nsb346309
  • Li, L., Li, Q., Davis, K., Patterson, C., Oo, S., Liu, W. and Zhang, B. (2021). Response of root growth and development to nitrogen and potassium deficiency as well as microrna-mediated mechanism in peanut (Arachis hypogaea L.). Frontiers in Plant Science, 12: 695234. https://doi.org/10.3389/fpls.2021.695234
  • Liu, X., Yin, C., Li, X., Jiang, W. and Xu, S. (2020). Transcription strategies related to photosynthesis and nitrogen metabolism of wheat in response to nitrogen deficiency. BMC Plant Biology, 20: 448. https://doi.org/10.1186/s12870-020-02662-3
  • Magahud, J. C., Dalumpines, S. L. P., Lincuna, A. E. and Estoy, G. F. (2019). Growth of rice, PSB Rc 82, and status of nutrients in lowland Agusan soil under alternate wetting and drying and minus-one-element conditions. Philippine Science Letters, 12(2): 107-121.
  • Mardhiana, M., Apriyani, D., Adiwena, M. and Pradana, A. P. (2021). Growth and yield performance of maize at red-yellow podzolic acid soil after oil palm empty fruit bunches compost and rice husk charcoal application. Journal of Degraded Mining Lands Management, 8(2): 2653-2660. https://doi.org/10.15243/jdmlm.2021.082.2653
  • Meng, W., Zhang, A., Li, H., Tang, Z. and Chen, X. (2015). Growth and physiological response to nitrogen deficiency and re-supply in leaf-vegetable sweetpotato (Ipomoea batatas Lam). Hortscience, 50(5): 754-758. https://doi.org/10.21273/hortsci.50.5.754
  • Mu, X., Chen, Q., Chen, F., Yuan, L. and Mi, G. (2017). A rna-seq analysis of the response of photosynthetic system to low nitrogen supply in maize leaf. International Journal of Molecular Sciences, 18(12): 2624. https://doi.org/10.3390/ijms18122624
  • Mujiyo, M., Puspito, G. J., Suntoro, S., Rahayu, R. and Purwanto, P. (2022). The effect of change in function from paddy field to dry land on soil fertility index. Environment and Natural Resources Journal, 20(1): 42-50. https://doi.org/10.32526/ennrj/20/202100127
  • Nasseri, A. (2021). Long-term water productivity of maize (Zea mays L.) from limited irrigation conditions under moderate semi-arid environment. Journal of Tekirdag Agricultural Faculty, 18(3): 400-410.
  • O’Connell, C. and Osmond, D. L. (2022). Why soil testing is not enough: A mixed methods study of farmer nutrient management decision-making among U.S. producers. Journal of Environmental Management, 314: 115017. https://doi.org/10.1016/j.jenvman.2022.115027
  • Olszewski, J., Makowska, M., Pszczółkowska, A., Okorski, A. and Bieniaszewski, T. (2014). The effect of nitrogen fertilization on flag leaf and ear photosynthesis and grain yield of spring wheat. Plant Soil and Environment, 60(12): 531-536. https://doi.org/10.17221/880/2013-pse
  • Öner, N. and Demirkıran, A. R. (2023). The effect of decreasing or increasing of the fertilizer amount on sunflower yield, nutrient contents and fertilizer costs. Journal of Agriculture, 6(2): 155-164. https://doi.org/10.46876/ja.1400564
  • Onofri, A. and Pannacci, E. (2014). Spreadsheet tools for biometry classes in crop science programmes. Communications in Biometry and Crop Science, 9(2): 3–13.
  • Osaki, M., Shinano, T., Matsumoto, M., Ushiki, J. and Shinano, M. M. (1995). Productivity of high-yielding crops. V. Root growth and specific absorption rate of nitrogen. Soil Science and Plant Nutrition, 41: 635–647.
  • Putra, F. P. and Ismoyojati, R. (2021). Monitoring of maize root growth on N, P, and K fertiliztion using rhizotron. Jurnal Ilmiah Pertanian, 17(2): 74-79. https://doi.org/10.31849/jip.v17i2.5748
  • Qu, C., Liu, C., Ze, Y., Gong, X., Hong, M., Wang, L. and Hong, F. (2011). Inhibition of nitrogen and photosynthetic carbon assimilation of maize seedlings by exposure to a combination of salt stress and potassium-deficient stress. Biological Trace Element Research, 144(1-3): 1159-1174. https://doi.org/10.1007/s12011-011-9037-6
  • Rey-Caramés, C., Tardaguila, J., Sanz-Garcia, A., Chica-Olmo, M. and Diago, M. P. (2016). Quantifying spatio-temporal variation of leaf chlorophyll and nitrogen contents in vineyards. Biosystems Engineering, 150: 201–213.
  • Rostami, M., Koocheki, A. R., Mahallati, M. N. and Kafi, M. (2008). Evaluation of chlorophyll mater (SPAD) data for prediction of nitrogen status in corn (Zea mays L.). American Eurasian Journal of Agricultural and Environmental Sciences, 3: 79–85.
  • Saito, A., Tanabata, S., Tanabata, T., Tajima, S., Ueno, M., Ishikawa, S., Ohtake, N., Sueyoshi, K. and Ohyama, T. (2014). Effect of nitrate on nodule and root growth of soybean (Glycine max (L.) merr.). International Journal of Molecular Sciences, 15(3): 4464-4480. https://doi.org/10.3390/ijms15034464
  • Salih, R., Abdan, K. and Wayayok, A. (2014). Growth responses of two kenaf varieties (Hibiscus cannabinus L.) applied by different levels of potassium, boron and zinc. Journal of Agricultural Science, 6(9): 37-45. https://doi.org/10.5539/jas.v6n9p37
  • Shah, S. H., Houborg, R. and McCabe, M. F. (2017). Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy, 7: 61.
  • Shiferaw, B., Prasanna, B.M., Hellin, J. and Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3: 307–327. https://doi.org/10.1007/s12571-011-0140-5
  • Sobhana, M., Vallabhaneni, R., Vasireddy, T. and Polavarpu, D. (2022). Deep ensemble mobile application for recommendation of fertilizer based on nutrient deficiency in rice plants using transfer learning models. International Journal of Interactive Mobile Technologies, 16(16): 100-112. https://doi.org/10.3991/ijim.v16i16.31497
  • Song, J. (2023). How to diagnose potassium abundance and deficiency in tomato leaves at the early cultivation stage. Horticulturae, 9(11): 1225. https://doi.org/10.3390/horticulturae9111225
  • Studer, C., Hu, Y. and Schmidhalter, U. (2017). Interactive effects of N-, P- and K-nutrition and drought stress on the development of maize seedlings. Agriculture, 7: 90. https://doi.org/10.3390/agriculture7110090
  • Thornburg, T. E., Liu, J., Li, Q., Xue, H., Wang, G., Li, L., Fontana, J. E., Davis, K. E., Liu, W., Zhang, B., Zhang, Z., Liu, M. and Pan, X. (2020). Potassium deficiency significantly affected plant growth and development as well as microRNA-Mediated mechanism in wheat (Triticum aestivum L.). Frontiers in Plant Science, 11:1219. https://doi.org/10.3389/fpls.2020.01219
  • Uddling, J., Gelang-Alfredsson, J., Piikki, K. and Pleijel, H. (2007). Evaluation of the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research, 91: 37–46.
  • Veazie, P., Cockson, P., Henry, J., Perkins-Veazie, P. and Whipker, B. (2020). Characterization of nutrient disorders and impacts on chlorophyll and anthocyanin concentration of Brassica rapa var. Chinensis. Agriculture, 10: 461. https://doi.org/10.3390/agriculture10100461
  • Wang, Y., Zhang, X., Chen, J., Chen, A., Wang, L., Guo, X., Niu, Y., Liu, S., Mi, G. and Gao, Q. (2019). Reducing basal nitrogen rate to improve maize seedling growth, water and nitrogen use efficiencies under drought stress by optimizing root morphology and distribution. Agricultural Water Management, 212: 328-337. https://doi.org/10.1016/j.agwat.2018.09.010
  • Wang, Y. and Wu, W.H. (2013). Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 64: 451–476.
  • Wu, Y., Qiang, L., Rong, J., Wei, C., Xiao-lin, L., Fan-lei, K., Yong-pei, K., Haichun, S. and Ji-chao, Y. (2019). Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low nitrogen tolerance. Journal of Integrative Agriculture, 18(6): 1246–1256. https://doi.org/10.1016/S2095-3119(18)62030-1
  • Yang, J. T., Schneider, H. M., Brown, K. M. and Lynch, J. P. (2019). Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific. Journal of Experimental Botany, 70(19): 5311-5325. https://doi.org/10.1093/jxb/erz293
  • Yessoufou, M. W. I. A., Tovihoudji, P. G., Zakari, S., Adjogboto, A., Djenontin, A. J. and Irenikatche Akponikpe, P. B. I. (2023). Hill-placement of manure and fertilizer for improving maize nutrient- and water-use efficiencies in the northern Benin. Heliyon, 9:e17823. https://doi.org/10.1016/j.heliyon.2023.e17823.
  • Yin, Y., Ying, H., Zheng, H., Zhang, Q., Xue, Y. and Cui, Z. (2019). Estimation of NPK requirements for rice production in diverse Chinese environments under optimal fertilization rates. Agricultural and Forest Meteorology 279: 107756. https://doi.org/10.1016/j.agrformet.2019.107756.
  • Yuan, Z., Cao, Q., Zhang, K., Ata-Ul-Karim, S.T., Tian, Y., Zhu, Y., Cao, W. and Liu, X. (2016). Optimal Leaf Positions for SPAD Meter Measurement in Rice. Frontiers in Plant Science, 7:719. https://doi.org/10.3389/fpls.2016.00719
  • Zhang, J., Blackmer, A., Blackmer, T. and Kyveryga, P. (2010). Fertilizer bands affect early growth of corn. Communications in Soil Science and Plant Analysis, 41(11): 1306-1314. https://doi.org/10.1080/00103621003759312
  • Zhao, L., Li, K., Wang, Q., Song, X., Su, H., Xie, B. and Zhang, Y. (2017). Nitrogen starvation impacts the photosynthetic performance of Porphyridium cruentum as revealed by chlorophyll a fluorescence. Scientific Reports, 7(1): 8542. https://doi.org/10.1038/s41598-017-08428-6
  • Živčák, M., Olsaovska, K., Slamka, P., Galambošová, J., Rataj, V., Shao, H., Brestič, M. (2014). Measurements of chlorophyll fluorescence in different leaf positions may detect nitrogen deficiency in wheat. Zemdirbyste-Agriculture, 101(4): 437-444. https://doi.org/10.13080/z-a.2014.101.056.
There are 72 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Articles
Authors

Fajrin Pramana Putra 0000-0001-6778-0775

Bhaskara Anggarda Gathot Subrata This is me 0000-0003-4191-9841

Rosyida Rosyida This is me 0009-0006-3405-6303

Muhamad Ghazi Agam Sas This is me 0000-0002-1245-7003

Early Pub Date January 14, 2025
Publication Date
Submission Date September 9, 2023
Acceptance Date January 3, 2025
Published in Issue Year 2025 Volume: 22 Issue: 1

Cite

APA Putra, F. P., Subrata, B. A. G., Rosyida, R., Sas, M. G. A. (2025). From Practice to Science: Assessment Soil Nutrient Status Using “Minus One Element Technique (MOET)” for Early Growth of Maize. Tekirdağ Ziraat Fakültesi Dergisi, 22(1), 35-45. https://doi.org/10.33462/jotaf.1357615
AMA Putra FP, Subrata BAG, Rosyida R, Sas MGA. From Practice to Science: Assessment Soil Nutrient Status Using “Minus One Element Technique (MOET)” for Early Growth of Maize. JOTAF. January 2025;22(1):35-45. doi:10.33462/jotaf.1357615
Chicago Putra, Fajrin Pramana, Bhaskara Anggarda Gathot Subrata, Rosyida Rosyida, and Muhamad Ghazi Agam Sas. “From Practice to Science: Assessment Soil Nutrient Status Using ‘Minus One Element Technique (MOET)’ for Early Growth of Maize”. Tekirdağ Ziraat Fakültesi Dergisi 22, no. 1 (January 2025): 35-45. https://doi.org/10.33462/jotaf.1357615.
EndNote Putra FP, Subrata BAG, Rosyida R, Sas MGA (January 1, 2025) From Practice to Science: Assessment Soil Nutrient Status Using “Minus One Element Technique (MOET)” for Early Growth of Maize. Tekirdağ Ziraat Fakültesi Dergisi 22 1 35–45.
IEEE F. P. Putra, B. A. G. Subrata, R. Rosyida, and M. G. A. Sas, “From Practice to Science: Assessment Soil Nutrient Status Using ‘Minus One Element Technique (MOET)’ for Early Growth of Maize”, JOTAF, vol. 22, no. 1, pp. 35–45, 2025, doi: 10.33462/jotaf.1357615.
ISNAD Putra, Fajrin Pramana et al. “From Practice to Science: Assessment Soil Nutrient Status Using ‘Minus One Element Technique (MOET)’ for Early Growth of Maize”. Tekirdağ Ziraat Fakültesi Dergisi 22/1 (January 2025), 35-45. https://doi.org/10.33462/jotaf.1357615.
JAMA Putra FP, Subrata BAG, Rosyida R, Sas MGA. From Practice to Science: Assessment Soil Nutrient Status Using “Minus One Element Technique (MOET)” for Early Growth of Maize. JOTAF. 2025;22:35–45.
MLA Putra, Fajrin Pramana et al. “From Practice to Science: Assessment Soil Nutrient Status Using ‘Minus One Element Technique (MOET)’ for Early Growth of Maize”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 22, no. 1, 2025, pp. 35-45, doi:10.33462/jotaf.1357615.
Vancouver Putra FP, Subrata BAG, Rosyida R, Sas MGA. From Practice to Science: Assessment Soil Nutrient Status Using “Minus One Element Technique (MOET)” for Early Growth of Maize. JOTAF. 2025;22(1):35-4.