Research Article
BibTex RIS Cite

Chemical Composition and Methane Production Potential of Agricultural Residues: Olive Pomace, Cottonseed Meal and Red Pepper Processing Waste

Year 2025, Volume: 22 Issue: 1, 195 - 204
https://doi.org/10.33462/jotaf.1513484

Abstract

Biogas is a renewable energy source produced through the anaerobic digestion of organic materials such as agricultural residues, manure, sewage, and food waste. This process involves the breakdown of these materials by microorganisms in the absence of oxygen, resulting in the production of a mixture of gases, primarily methane (CH4) and carbon dioxide (CO2), along with trace amounts of other gases like hydrogen sulfide (H2S) and ammonia (NH3). Biogas production from agricultural residues like olive pomace (OLV), cottonseed meal (CTM), and red pepper processing (RPP) waste holds promise for sustainable energy generation and waste management. This study investigates the chemical composition and methane production potential of these residues, emphasizing their protein, fat content, and Acid Detergent Fiber (ADF)/Neutral Detergent Fiber (NDF) ratios. Chemical analyses revealed significant variations among the materials, with cotton waste exhibiting the highest dry matter, organic matter, protein, and fat content, while pepper waste showed the highest ash content, and olive waste had the highest fiber (ADF and NDF) content. Methane production ranged from 0.34 to 0.45 m³ kg-1 of organic dry matter (ODM), with cotton displaying the highest methane yield. Biogas production ranged from 0.61 to 0.78 m³ kg-1 ODM, with cotton again yielding the highest biogas production. Methane content in biogas varied between 54.64% and 57.72%, with cotton also showing the highest methane content. At the end of the study, the dry matter (DM) and organic dry matter (ODM), ash, protein, fat, ADF, and NDF ratios of the materials were determined to be 85.51%-94.09%, 87.91%-92.92%, 7.08%-12.09%, 7.49%-15.93%, 3.76%-8.01%, 52.16%-71.07%, and 34.49%-55.58%, respectively. The materials showed chemical differences. Research highlights include the significant bioenergy potential of olive waste and cottonseed meals, alongside the environmental benefits of utilizing olive pomace for biogas production. Experimental findings reveal varying methane and biogas yields across materials, influenced by their nutrient compositions. The study underscores the viability of integrating these agricultural residues into biogas production systems, contributing to renewable energy initiatives and sustainable agricultural waste management practices.

Ethical Statement

There is no need to obtain permission from the ethics committee for this study.

References

  • Al-Addous, M., Alnaief, M., Class, C. B., Nsair, A., Kuchta, K. and Alkasrawi, M. (2017). Technical possibilities of biogas production from olive and date waste in jordan. BioResources, 12(4): 9383-9395.
  • Alonso-Fariñas, B., Oliva, A., Rodríguez‐Galán, M., Esposito, G., García‐Martín, J. F., Rodríguez-Gutiérrez, G. and Fermoso, F. G. (2020). Environmental assessment of olive mill solid waste valorization via anaerobic digestion versus olive pomace oil extraction. Processes, 8(5): 626.
  • AOAC (1990). Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, U.S.A.
  • Ariunbaatar, J., Di Perta, E. S., Panico, A., Frunzo, L., Esposito, G., Lens, P. N. and Pirozzi, F. (2015). Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste. Waste Management, 38(2015): 388-398.
  • Aybek, A., Üçok S., Bilgili M. E. and İspir M. A. (2015) Digital mapping and determination of biogas energy potential of usable animal manure and cereal straw wastes in Turkey. Journal of Tekirdag Agricultural Faculty, 12(3): 109-120.
  • Bilgin, S., Yılmaz, H. and Koçer, A. (2015). Briquetting of greenhouse pepper crop residues. Agricultural Engineering International: CIGR Journal, (Special Issue: 18th World Congress of CIGR): 185–192.
  • Borja, R., Martín, A., Rincón, B. and Raposo, F. (2003). Kinetics for substrate utilization and methane production during the mesophilic anaerobic digestion of two phases olive pomace (TPOP). Journal of Agricultural and Food Chemistry, 51(11): 3390-3395.
  • Chen, J. L., Ortiz, R., Steele, T. W. J. and Stuckey, D. C. (2014). Toxicants inhibiting anaerobicdigestion: a review. Biotechnology Advances, 32: 1523–1534.
  • Develi, H. C., Aybek, A. and Üçok, S. (2021). Pellet production from pistachio shell and olive cake for biofuels. Journal of Tekirdag Agricultural Faculty, 18(4): 689-701.
  • Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K. and Yu, Z. (2009). Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. International Journal of Hydrogen Energy, 34(2): 812-820.
  • Hallenbeck, P. C. (2009). Fermentative hydrogen production: principles, progress, and prognosis. International Journal of Hydrogen Energy, 34(17): 7379-7389.
  • Juanga-Labayen, J., Yanac, K. and Yuan, Q. (2021). Effect of substrate-to-inoculum ratio on anaerobic digestion of treated and untreated cotton textile waste. International Journal of Environmental Science and Technology, 18(2021): 287-296.
  • Kaya, G. (2024). Evaluation of bioenergy recovery from olive mill waste and cotton stalks in Turkey: Case study for biogas production (MSc. Thesis) Studiengang University of Applied Sciences/Fachbereich Bioengineering, Wien, Austria.
  • Lerdlattaporn, R., Phalakornkule, C., Trakulvichean, S and Songkasiri, W. (2020). Implementing circular economy concept by converting cassava pulp and wastewater to biogas for sustainable production in starch industry. Sustainable Environment Research, 31(1): 20.
  • Li, Y., Zhang, Q., Li, W. and Yu, L. (2011). Effects of different pretreatment conditions on biogas production by anaerobic fermentation of cotton stalk. Transactions of the Chinese Society of Agricultural Engineering, 27(2): 287-292.
  • Messineo, A., Manfredi, P. M. and Roberto Volpe. (2020). Biomethane recovery from olive mill residues through anaerobic digestion: A review of the state of the art technology. Science of The Total Environment, 703(10): 135508.
  • Semerci, A. and Çelik, A. D. (2018). Functional analysis of cotton production in Hatay Province. Journal of Tekirdag Agricultural Faculty, 15(2): 78-86.
  • Sumardiono, S., Jos, B., Dewanti, A. A. E., Mahendra, I. N. B, and Cahyono, H. (2021). Biogas production from coffee pulp and chicken feathers using liquid- and solid-state anaerobic digestions. Energies, 14(15): 4664.
  • Sumardiono, S., Riyanta, A. B., Matin, H. H. A., Kusworo, T. D., Jos, B. and Budiyono, B. (2016). Increasing biogas production from sugar cane baggase by anaerobic co-digestion with animal manure. Sriwijaya International Conference on Engineering, Science and Technology (SICEST 2016), 9-10 November, P. 183-189, Bangka Island, Indonesia.
  • Tokel, D., Dogan, I., Hocaoglu O. A. and Ozyigit, I. I. (2022). Cotton agriculture in Turkey and worldwide economic impacts of Turkish cotton. Journal of Natural Fibers, 19(15): 10648-10667.
  • Tufaner, F. (2020). Biogas Productıon From Olive Pomace (Prina) Wastes. V. Internatıonal Battalgazi Scıentıfıc Studıes Congress, 18-20 December, P. 511-519, Malatya, Turkey.
  • Uddin, M. A., Siddiki, S. Y. A., Ahmed, S. F., Rony, Z. I., Chowdhury, M. A. K. and Mofijur, M. (2021). Estimation of sustainable bioenergy production from olive mill solid waste. Energies, 14(22): 7654.
  • Valenti, F., Cascone, G. and Arcidiacono, C. (2017). Potential biogas production from agricultural by-products in sicily: a case study of citrus pulp and olive pomace. Journal of Agricultural Engineering, 48(4): 196-202.
  • Van Soest, P. J., Robertson, J. B. and Lewis, B. A. (1991). Methods for dietary fiber, neutraldetergent fiber, and nonstarchpolysaccharides in relationtoanimalnutrition. Journal of Dairy Science, 74: 3583–3597.
  • VDI 4630 (2006). Fermentation of Organic Material, Characterization of Substrate, Collection of Material Data, Fermentation Tests, VDI Society Energy Technology, Stuttgart, Germany.
  • Venkateshkumar, R., Shanmugam, S. and Veerappan, A. (2021). Evaluation of biogas through chemically treated cottonseed hull in anaerobic digestion with/without cow dung: an experimental study. BioEnergy Research, 16(1): 660-672.
  • Ziemiński, K. and Kowalska W. M. (2016). Effect of different sugar beet pulp pretreatments on biogas production efficiency. Applied Biochemistry and Biotechnology, 181(3): 1211-1227.
  • Zupančič, G. D., Lončar, A., Ranilović, J., Šubarić, D and Panjičko, M. (2024). The influence of polyphenolic compounds on anaerobic digestion of pepper processing waste during biogas and biomethane production. Processes, 12(5): 913.

Tarımsal Artıkların Kimyasal Komposizyonları ve Metan Üretim Potansiyeli: Zeytin Prinası, Pamuk Tohumu Küspesi ve Kırmızı Biber İşleme Atıkları

Year 2025, Volume: 22 Issue: 1, 195 - 204
https://doi.org/10.33462/jotaf.1513484

Abstract

Biyogaz, tarımsal artıklar, gübre, kanalizasyon ve gıda atıkları gibi organik materyallerin anaerobik olarak çürütülmesi yoluyla üretilen yenilenebilir bir enerji kaynağıdır. Bu işlem, oksijen yokluğunda bu malzemelerin mikroorganizmalar tarafından parçalanmasını içerir ve bunun sonucunda başta metan (CH4) ve karbon dioksit (CO2) olmak üzere bir gaz karışımının yanı sıra eser miktarda hidrojen sülfür (H2S) ve amonyak (NH3) gibi diğer gazların üretilmesi sağlanır. Zeytin posası (OLV), pamuk tohumu küspesi (CTM) ve kırmızı biber işleme (RPP) atıkları gibi tarımsal atıklardan biyogaz üretimi, sürdürülebilir enerji üretimi ve atık yönetimi için umut vaat etmektedir. Bu çalışma, bu atıkların kimyasal bileşimini ve metan üretim potansiyelini, protein, yağ içeriği ve Asit Deterjan Sellülozu (ADF)/(Nötral Deterjan Sellülozu) NDF oranlarına vurgu yaparak araştırmaktadır. Kimyasal analizler, organik materyaller arasında önemli farklılıklar olduğunu ortaya koymuş; pamuk atığı en yüksek kuru madde, organik madde, protein ve yağ içeriğini gösterirken, biber atığı en yüksek kül içeriğini, zeytin atığı ise en yüksek lif (ADF ve NDF) içeriğini göstermiştir. Metan üretimi, organik kuru madde (ODM) başına 0.34 ile 0.45 m³ kg-1 arasında değişmiş ve en yüksek metan verimi pamukta gözlemlenmiştir. Biyogaz üretimi, ODM başına 0.61 ile 0.78 m³ kg-1 arasında değişmiş ve en yüksek biyogaz üretimi yine pamuk atıklarında ortaya çıkmıştır. Biyogazdaki metan içeriği %54.64 ile %57.72 arasında değişmiş ve pamuk en yüksek metan içeriğini göstermiştir. Çalışma sonucunda materyallerin kuru madde (KM) ve organik kuru madde (OKM), kül, protein, yağ, ADF (Asit Detergent Fibre) ve NDF (Neutral Detergent Fibre) oranları yapılan analizler sonucunda sırasıyla; %85.51-%94.09, %87.91-%92.92, %7.08-%12.09, %7.49-%15.93, %3.76-%8.01, %52.16-%71.07 ve %34.49-%55.58 olarak belirlenmiştir. Materyaller arasında kimyasal farklılıklar meydana gelmiştir. Araştırma, zeytin atığı ve pamuk tohumu küspesinin önemli biyoyakıt potansiyelini ve zeytin posasının biyogaz üretimi için kullanılmasının çevresel faydalarını vurgulamaktadır. Deneysel bulgular, besin bileşimleri farklı organik atıkların metan ve biyogaz verimlerini ortaya koymaktadır. Çalışma, bu tarımsal atıkların biyogaz üretim sistemlerine entegre edilmesinin yenilenebilir enerji girişimlerine ve sürdürülebilir tarımsal atık yönetimi uygulamalarına katkıda bulunma olasılığını vurgulamaktadır.

References

  • Al-Addous, M., Alnaief, M., Class, C. B., Nsair, A., Kuchta, K. and Alkasrawi, M. (2017). Technical possibilities of biogas production from olive and date waste in jordan. BioResources, 12(4): 9383-9395.
  • Alonso-Fariñas, B., Oliva, A., Rodríguez‐Galán, M., Esposito, G., García‐Martín, J. F., Rodríguez-Gutiérrez, G. and Fermoso, F. G. (2020). Environmental assessment of olive mill solid waste valorization via anaerobic digestion versus olive pomace oil extraction. Processes, 8(5): 626.
  • AOAC (1990). Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, U.S.A.
  • Ariunbaatar, J., Di Perta, E. S., Panico, A., Frunzo, L., Esposito, G., Lens, P. N. and Pirozzi, F. (2015). Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste. Waste Management, 38(2015): 388-398.
  • Aybek, A., Üçok S., Bilgili M. E. and İspir M. A. (2015) Digital mapping and determination of biogas energy potential of usable animal manure and cereal straw wastes in Turkey. Journal of Tekirdag Agricultural Faculty, 12(3): 109-120.
  • Bilgin, S., Yılmaz, H. and Koçer, A. (2015). Briquetting of greenhouse pepper crop residues. Agricultural Engineering International: CIGR Journal, (Special Issue: 18th World Congress of CIGR): 185–192.
  • Borja, R., Martín, A., Rincón, B. and Raposo, F. (2003). Kinetics for substrate utilization and methane production during the mesophilic anaerobic digestion of two phases olive pomace (TPOP). Journal of Agricultural and Food Chemistry, 51(11): 3390-3395.
  • Chen, J. L., Ortiz, R., Steele, T. W. J. and Stuckey, D. C. (2014). Toxicants inhibiting anaerobicdigestion: a review. Biotechnology Advances, 32: 1523–1534.
  • Develi, H. C., Aybek, A. and Üçok, S. (2021). Pellet production from pistachio shell and olive cake for biofuels. Journal of Tekirdag Agricultural Faculty, 18(4): 689-701.
  • Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K. and Yu, Z. (2009). Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. International Journal of Hydrogen Energy, 34(2): 812-820.
  • Hallenbeck, P. C. (2009). Fermentative hydrogen production: principles, progress, and prognosis. International Journal of Hydrogen Energy, 34(17): 7379-7389.
  • Juanga-Labayen, J., Yanac, K. and Yuan, Q. (2021). Effect of substrate-to-inoculum ratio on anaerobic digestion of treated and untreated cotton textile waste. International Journal of Environmental Science and Technology, 18(2021): 287-296.
  • Kaya, G. (2024). Evaluation of bioenergy recovery from olive mill waste and cotton stalks in Turkey: Case study for biogas production (MSc. Thesis) Studiengang University of Applied Sciences/Fachbereich Bioengineering, Wien, Austria.
  • Lerdlattaporn, R., Phalakornkule, C., Trakulvichean, S and Songkasiri, W. (2020). Implementing circular economy concept by converting cassava pulp and wastewater to biogas for sustainable production in starch industry. Sustainable Environment Research, 31(1): 20.
  • Li, Y., Zhang, Q., Li, W. and Yu, L. (2011). Effects of different pretreatment conditions on biogas production by anaerobic fermentation of cotton stalk. Transactions of the Chinese Society of Agricultural Engineering, 27(2): 287-292.
  • Messineo, A., Manfredi, P. M. and Roberto Volpe. (2020). Biomethane recovery from olive mill residues through anaerobic digestion: A review of the state of the art technology. Science of The Total Environment, 703(10): 135508.
  • Semerci, A. and Çelik, A. D. (2018). Functional analysis of cotton production in Hatay Province. Journal of Tekirdag Agricultural Faculty, 15(2): 78-86.
  • Sumardiono, S., Jos, B., Dewanti, A. A. E., Mahendra, I. N. B, and Cahyono, H. (2021). Biogas production from coffee pulp and chicken feathers using liquid- and solid-state anaerobic digestions. Energies, 14(15): 4664.
  • Sumardiono, S., Riyanta, A. B., Matin, H. H. A., Kusworo, T. D., Jos, B. and Budiyono, B. (2016). Increasing biogas production from sugar cane baggase by anaerobic co-digestion with animal manure. Sriwijaya International Conference on Engineering, Science and Technology (SICEST 2016), 9-10 November, P. 183-189, Bangka Island, Indonesia.
  • Tokel, D., Dogan, I., Hocaoglu O. A. and Ozyigit, I. I. (2022). Cotton agriculture in Turkey and worldwide economic impacts of Turkish cotton. Journal of Natural Fibers, 19(15): 10648-10667.
  • Tufaner, F. (2020). Biogas Productıon From Olive Pomace (Prina) Wastes. V. Internatıonal Battalgazi Scıentıfıc Studıes Congress, 18-20 December, P. 511-519, Malatya, Turkey.
  • Uddin, M. A., Siddiki, S. Y. A., Ahmed, S. F., Rony, Z. I., Chowdhury, M. A. K. and Mofijur, M. (2021). Estimation of sustainable bioenergy production from olive mill solid waste. Energies, 14(22): 7654.
  • Valenti, F., Cascone, G. and Arcidiacono, C. (2017). Potential biogas production from agricultural by-products in sicily: a case study of citrus pulp and olive pomace. Journal of Agricultural Engineering, 48(4): 196-202.
  • Van Soest, P. J., Robertson, J. B. and Lewis, B. A. (1991). Methods for dietary fiber, neutraldetergent fiber, and nonstarchpolysaccharides in relationtoanimalnutrition. Journal of Dairy Science, 74: 3583–3597.
  • VDI 4630 (2006). Fermentation of Organic Material, Characterization of Substrate, Collection of Material Data, Fermentation Tests, VDI Society Energy Technology, Stuttgart, Germany.
  • Venkateshkumar, R., Shanmugam, S. and Veerappan, A. (2021). Evaluation of biogas through chemically treated cottonseed hull in anaerobic digestion with/without cow dung: an experimental study. BioEnergy Research, 16(1): 660-672.
  • Ziemiński, K. and Kowalska W. M. (2016). Effect of different sugar beet pulp pretreatments on biogas production efficiency. Applied Biochemistry and Biotechnology, 181(3): 1211-1227.
  • Zupančič, G. D., Lončar, A., Ranilović, J., Šubarić, D and Panjičko, M. (2024). The influence of polyphenolic compounds on anaerobic digestion of pepper processing waste during biogas and biomethane production. Processes, 12(5): 913.
There are 28 citations in total.

Details

Primary Language English
Subjects Biosystem
Journal Section Articles
Authors

Serdar Üçok 0000-0002-7158-669X

Xufei Yang This is me 0000-0003-1933-7765

Early Pub Date January 14, 2025
Publication Date
Submission Date July 24, 2024
Acceptance Date November 26, 2024
Published in Issue Year 2025 Volume: 22 Issue: 1

Cite

APA Üçok, S., & Yang, X. (2025). Chemical Composition and Methane Production Potential of Agricultural Residues: Olive Pomace, Cottonseed Meal and Red Pepper Processing Waste. Tekirdağ Ziraat Fakültesi Dergisi, 22(1), 195-204. https://doi.org/10.33462/jotaf.1513484
AMA Üçok S, Yang X. Chemical Composition and Methane Production Potential of Agricultural Residues: Olive Pomace, Cottonseed Meal and Red Pepper Processing Waste. JOTAF. January 2025;22(1):195-204. doi:10.33462/jotaf.1513484
Chicago Üçok, Serdar, and Xufei Yang. “Chemical Composition and Methane Production Potential of Agricultural Residues: Olive Pomace, Cottonseed Meal and Red Pepper Processing Waste”. Tekirdağ Ziraat Fakültesi Dergisi 22, no. 1 (January 2025): 195-204. https://doi.org/10.33462/jotaf.1513484.
EndNote Üçok S, Yang X (January 1, 2025) Chemical Composition and Methane Production Potential of Agricultural Residues: Olive Pomace, Cottonseed Meal and Red Pepper Processing Waste. Tekirdağ Ziraat Fakültesi Dergisi 22 1 195–204.
IEEE S. Üçok and X. Yang, “Chemical Composition and Methane Production Potential of Agricultural Residues: Olive Pomace, Cottonseed Meal and Red Pepper Processing Waste”, JOTAF, vol. 22, no. 1, pp. 195–204, 2025, doi: 10.33462/jotaf.1513484.
ISNAD Üçok, Serdar - Yang, Xufei. “Chemical Composition and Methane Production Potential of Agricultural Residues: Olive Pomace, Cottonseed Meal and Red Pepper Processing Waste”. Tekirdağ Ziraat Fakültesi Dergisi 22/1 (January 2025), 195-204. https://doi.org/10.33462/jotaf.1513484.
JAMA Üçok S, Yang X. Chemical Composition and Methane Production Potential of Agricultural Residues: Olive Pomace, Cottonseed Meal and Red Pepper Processing Waste. JOTAF. 2025;22:195–204.
MLA Üçok, Serdar and Xufei Yang. “Chemical Composition and Methane Production Potential of Agricultural Residues: Olive Pomace, Cottonseed Meal and Red Pepper Processing Waste”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 22, no. 1, 2025, pp. 195-04, doi:10.33462/jotaf.1513484.
Vancouver Üçok S, Yang X. Chemical Composition and Methane Production Potential of Agricultural Residues: Olive Pomace, Cottonseed Meal and Red Pepper Processing Waste. JOTAF. 2025;22(1):195-204.