Research Article
BibTex RIS Cite

İzo-Ozmotik NaCl ve PEG6000 Solüsyonlarının Tatlı Beyaz Acı Baklanın (Lupinus albus L.) Çimlenme ve İlk Fide Gelişimi Üzerine Etkileri

Year 2025, Volume: 22 Issue: 2, 373 - 385, 26.05.2025
https://doi.org/10.33462/jotaf.1443573

Abstract

Tatlı beyaz acı bakla, zengin protein ve mineral içeriği nedeniyle temel bir ürün olarak giderek artan bir öneme sahiptir. Fide aşamasında elverişsiz çevre koşullarının araştırılması, çimlenme ve erken büyüme sırasındaki zorlukların anlaşılması ve üstesinden gelinmesi için kritik öneme sahiptir. Bu çalışmada, tatlı beyaz acı baklada (Lupinus albus L.) tohum çimlenmesi ve ilk fide büyümesi üzerine NaCl ve PEG6000 ozmotik ajanlarının izo-ozmotik potansiyelde (0, -0,3 ve -0,6 MPa) indüksiyonu ile oluşturulan tuz ve kuraklık stresinin etkileri araştırılmıştır. Araştırma, tesadüfi parseller deneme desenine göre 4 tekerrür olacak şekilde laboratuvar koşullarında 21 gün boyunca yürütülmüştür. Stres altındaki büyümeyi değerlendirmek amacıyla çimlenme yüzdesi, ortalama çimlenme süresi, çimlenme indeksi, sürgün ve kök uzunluğu, kök/sürgün oranı, sürgün ve kök taze ağırlığı, sürgün ve kök kuru ağırlığı, sürgün ve kök kuru madde içeriği, kök/sürgün kuru madde içeriği, sürgün ve kök su içeriği ve fide canlılık indeksi parametreleri ölçülmüştür. Sonuçlar, aynı ozmotik potansiyelde uygulanan NaCl ve PEG6000 çözeltilerinin ölçülen çimlenme ve büyüme parametreleri üzerinde istatistiksel olarak anlamlı etkilere sahip olduğunu göstermiştir. Aynı ozmotik potansiyelde PEG6000 uygulamaları, NaCl uygulamalarına kıyasla çimlenme ve ilk fide büyümesi üzerinde daha olumsuz etkilere sahip olmuştur. Ayrıca, PEG6000 ve NaCl uygulamalarında sürgün büyümesi kök büyümesine kıyasla daha olumsuz etkilenmiştir. Çimlenme -0.6 MPa PEG6000 uygulamasında sınırlı kalmış ve sonuç olarak fide büyümesi gözlenmemiştir. Bu çalışmada, tatlı beyaz acı baklanın çimlenme ve ilk fide büyüme dönemlerinde kuraklığa karşı toleransının, aynı izo-ozmotik potansiyeldeki tuzluluktan daha düşük olduğunu ve -0.6 MPa (12,7 dS/m EC ve %22 PEG6000) ozmotik su potansiyeli gösteren tuzlu ve kurak toprakların acı bakla çimlenmesi ve büyümesi için engelleyici olduğunu belgelenmiştir. Bu çalışma, tuz ve ozmotik stresin beyaz acı bakla üzerindeki etkileri konusunda daha ileri fizyolojik ve moleküler çalışmalar yapılmasına zemin hazırlamaktadır.

Ethical Statement

Bu çalışma için etik kuruldan izin alınmasına gerek yoktur.

References

  • Abdul-Baki, A. A. and Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13: 630-633.
  • Al-Enezi, N. A., Al-Bahrany, A. M. and Al-Khayri, J. M. (2012). Effect of X-irradiation on date palm seed germination and seedling growth. Emirates Journal of Food and Agriculture, 24(5): 415-424.
  • Annicchiarico, P., Romani, M. and Pecetti, L. (2018). White lupin (Lupinus albus L.) variation for adaptation to severer drought stress. Plant Breeding, 137:782–789.
  • Benlioglu, B., Ozkan, U. (2020). Germination and Early Growth Performances of Mung Bean (Vigna radiata (L.) Wilczek) Genotypes Under Salinity Stress. Journal of Tekirdag Agrcultural Faculty, 17(3): 318-328.
  • Beyaz, B., Kaya, G., Cocu, S. and Sancak, C. (2011). Response of seeds and pollen of Onobrychis viciifolia and Onobrychis oxyodonta var. armena to NaCl stress. Scientia Agricola, 68(4):477-481.
  • Beyaz, R. (2023). Germination and seedling properties of Lotus corniculatus L. under simulated drought stress. Journal of Tekirdag Agricultural Faculty, 20(4): 879-889.
  • Borsai, O., Al Hassan, M., Boscaiu, M., Sestras, R. E. and Vicente, O. (2018). Effects of salt stress on seed germination and seedling growth in Portulaca. Romanian Biotechnological Letters, 23(1), 1–10.
  • Bres, W., Kleiber, T., Markiewicz, B., Mieloszyk, E. and Mieloch, M. (2022). The effect of NaCl stress on the response of lettuce (Lactuca sativa L.). Agronomy, 12(2): 244.
  • Çakmakçı, S. and Dallar, A. (2019). Effects of different temperatures and salt concentrations on the germination of some corn silage varieties. Journal of Tekirdağ Agricultural Faculty, 16(2): 121-132.
  • Coons, J. M., Kuehl, R. O. and Simons, N. R. (1990). Tolerance of ten lettuce cultivars to high temperature combined with NaCl during germination. Journal of the American Society for Horticultural Science, 115: 1004–1007.
  • Darko, E., Ve´gh, B., Khalil, R., Marček, T., Szalai, G. and Pa´l, M. (2019). Metabolic responses of wheat seedlings to osmotic stress induced by various osmolytes under iso-osmotic conditions. PLoS ONE, 14(12): e0226151.
  • Demir, I. and Mavi, K. (2008). Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages. Brazilian Archives of Biology and Technology, 51: 897–902.
  • Ellis, R. H. and Roberts, E. H. (1980). Towards a rational basis for testing seed quality. p. 605-635. In: Hebblethwaite, P.D., ed. Seed production. Butterworths, England.
  • Fernandes, F. M., Arrabaça, M. C. and Carvalho, L. M. M. (2004). Sucrose metabolism in Lupinus albus L. under salt stress. Biologia Plantarum, 48(2): 317-319.
  • Ghiyasi, M., Amirnia, R., Damalas, C. and Moghaddam, S. (2019). Chemical priming with salt and urea improves germination and seedling growth of black cumin (Nigella sativa L.) under Osmotic Stress. Journal of Plant Growth Regulation, 38:1170-1178.
  • Giordano, M., Petropoulos, S. A. and Rouphael, Y. (2021). Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture, 11(463): 1-30.
  • Hussien, E. T. (2022). Salinity stress affecting viability and genetic stability of Lupinus albus L. Vegetos, 35: 674-680.
  • Kaya, M. D., Okçu, G., Atak, M., Cıkılı, Y. and Kolsarıcı, Ö. (2006). Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24:291-295.
  • Khajeh-Hosseini, M., Powell, A. A. and Bingham, I. J. (2003). The interaction between salinity stress and seed vigour during germination of soybean seeds. Seed Science and Technology, 31:715-725.
  • Lei, C., Bagavathiannan, M., Wang, H., Sharpe, S. M., Meng, W. and Yu, J. (2021). Osmopriming with polyethylene glycol (PEG) for abiotic stress tolerance in germinating crop seeds: A review. Agronomy, 11(11): 1-12.
  • Li, J., Yin, L.Y., Jongsma, M. A. and Wang, C. Y. (2011). Effects of light, hydropriming and abiotic stress on seed germination, and shoot and root growth of pyrethrum (Tanacetum cinerariifolium). Industrial Crops and Products, 34: 1543-1549.
  • Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigour. Crop Science, 2:176-177.
  • Michel, B. E. and Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51: 914-916.
  • Moosavi, A., Afshari, R.T., Sharif-Zadeh, F. and Aynehband, A. (2009). Seed priming to increase salt and drought stress tolerance during germination in cultivated species of Amaranth. Seed Science and Technology, 37: 781-785.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell Environment, 25:239-250.
  • Murillo-Amador, B., Lopez-Aguilar, R., Kaya, C., Larrinaga-Mayoral, J. and Flores-Hernandez, A. (2002). Comparative effect of NaCl and PEG on germination emergence and seedling growth of cowpea. Journal of Agronomy and Crop Science, 188: 235-247.
  • Panneerselvam, R., Mutthukumarsamy, M. and Rajan S. N. (1998). Amelioration of NaCl stress by triadimefon in soyabean seedlings. Biologia Plantarum, 41(1): 133-137.
  • Pecetti, L., Annicchiarico, P., Crosta, M., Notario, T., Ferrari, B. and Nazzicari, N. (2023). White Lupin Drought Tolerance: Genetic Variation, Trait Genetic Architecture, and Genome-Enabled Prediction. International Journal of Molecular Sciences, 24: 2351.
  • Perissé, P., Aiazzi, M. T. and Planchuelo, A. M. (2002), Water uptake and germination of Lupinas albus L. and Lupinas angustifolius L. under water stress Seed Science and Technology, 30: 289-298.
  • Pinheriro, C., Passarinho, J. A. and Ricardo, C. P. (2004). Effect of drought and rewatering on the metabolism of Lupinus albus organs. Journal of Plant Physiology, 161:1203-1210.
  • Rehman, S., Harris, P. J. C., Bourne, W. F. and Wilkin, J. (1996). The effect of sodium chloride on germination and the potassium and calcium content of Acacia seeds. Seed Science and Technology, 25: 45–57.
  • Şehirali, S. and Yorgancılar, Ö. (2011). Tohumluk ve Teknolojisi. Düzeltilmiş Dördüncü Baskı. İzmir. 528 s. Slabu, C., Simioniuc, D. P., Lipşa, F. D. and Simioniuc V. (2010). Physiological response to water and salt stress of some white lupine cultivars (Lupinus albus). Lucrări Ştiinţifice Seria Agronomie, 53(1): 64-68.
  • Snedecor, G. W. and Cochran, W. G. (1967). Statistical Methods, 6th ed. Ames, p 693. Iowa: Iowa State University Press, U.S.A.
  • Sousa, E. C., Silva, D. V., Sousa, D. M. M., Torres, S. B. and Oliveira, R. R. T. (2018). Physiological changes in Mimosa caesalpiniifolia Benth. seeds from different sources and submitted to abiotic stresses. Revista Brasileira de Engenharia Agrícola e Ambienta, 22:383-389.
  • Tavares, D. S., Fernandes, T. E. K., Rita, Y. L., Rocha, D. C., Sant’Anna-Santos, B. F., Gomes, M. P. (2021). Germinative metabolism and seedling growth of cowpea (Vigna unguiculata) under salt and osmotic stress. South African Journal of Botany, 139: 399–408.
  • Yagmur, M. and Kaydan, D. (2008). Alleviation of osmotic stress of water and salt in germination and seedling growth of triticale with seed priming treatments. African Journal of Biotechnology, 7: 2156-2162.
  • Yildiz, M., Poyraz, İ., Çavdar, A., Ozgen, Y. and Beyaz, R. (2020). Plant Responses to Salt Stress, in Plant Breeding - Current and Future Views, Eds Abdurakhmonov Ibrokhim Y., IntechOpen, England.
  • Yu, Q. and Rengel, Z. (1999). Drought and salinity differentially influence activities of superoxide dismutases in narrow-leafed lupins. Plant Science, 142: 1-11.
  • Zheng, Q., Liu, Z., Chen, G., Gao, Y., Li, Q. and Wang, J. (2010). Comparison of osmotic regulation in dehydration and salinity stressed sunflower seedlings. Journal of Plant Nutrition, 33: 966-981.
  • Zheng, Y., Jia, A., Ning, T., Xu, J., Li, Z. and Jiang, G. (2008). Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. Journal of Plant Physiology, 165: 1455-1465.
  • Zuffo, A. M., Steiner, F., Sousa, T. D. O., Aguilera, J. G., Teodoro, P. E. and de Alcantara Neto, F. (2020). How does water and salt stress affect the germination and initial growth of Brazilian soya bean cultivars? Journal of Agronomy and Crop Science, 206: 837-850.

Effects of Iso-Osmotic Potential of NaCl and PEG6000 Solutions on Germination and Initial Seedling Growth of Sweet White Lupin (Lupinus albus L)

Year 2025, Volume: 22 Issue: 2, 373 - 385, 26.05.2025
https://doi.org/10.33462/jotaf.1443573

Abstract

Sweet white lupin has a growing importance as a staple crop due to its rich protein and mineral content. Investigation of unfavorable environmental conditions at the seedling stage is critical for understanding and overcoming the challenges during germination and initial growth. In this study, the effects of salt and drought stress were investigated upon induction of NaCl and PEG6000 osmotic agents at iso-osmotic potential (0, -0.3 and -0.6 MPa) on seed germination and initial seedling growth in sweet white lupin (Lupinus albus L.). The research was carried out for 21 days under laboratory conditions according to a completely randomized plot design with 4 replicates. In order to assess the growth upon stress, germination percentage, mean germination time, germination rate index, shoot and root length, root/shoot length, shoot and root fresh weight, shoot and root dry weight, shoot and root dry matter content, root/shoot dry matter content, shoot and root water content and seedling vigor index parameters were measured. The results demonstrated that NaCl and PEG6000 solutions applied at the same osmotic potential had statistically significant effects on the measured germination and growth parameters. PEG6000 treatments at the same osmotic potential had more adverse effects on germination and initial seedling growth than NaCl treatments. In addition, shoot growth was more adversely affected than root growth in PEG6000 and NaCl treatments. The germination was limited in -0.6 MPa PEG6000 treatment and no subsequent seedling growth was observed. In this study, we documented that the white lupine's tolerance to drought during germination and initial seedling growth periods was lower than salinity at the same iso-osmotic potential and saline and arid soils showing an osmotic water potential of -0.6 MPa (12.7 dS m-1 EC and 22% PEG6000) are inhibitory for lupin germination and growth. This study lays the ground for further physiological and molecular studies on the effects of salt and osmotic stress on white lupins.

Ethical Statement

There is no need to obtain permission from the ethics committee for this study.

References

  • Abdul-Baki, A. A. and Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13: 630-633.
  • Al-Enezi, N. A., Al-Bahrany, A. M. and Al-Khayri, J. M. (2012). Effect of X-irradiation on date palm seed germination and seedling growth. Emirates Journal of Food and Agriculture, 24(5): 415-424.
  • Annicchiarico, P., Romani, M. and Pecetti, L. (2018). White lupin (Lupinus albus L.) variation for adaptation to severer drought stress. Plant Breeding, 137:782–789.
  • Benlioglu, B., Ozkan, U. (2020). Germination and Early Growth Performances of Mung Bean (Vigna radiata (L.) Wilczek) Genotypes Under Salinity Stress. Journal of Tekirdag Agrcultural Faculty, 17(3): 318-328.
  • Beyaz, B., Kaya, G., Cocu, S. and Sancak, C. (2011). Response of seeds and pollen of Onobrychis viciifolia and Onobrychis oxyodonta var. armena to NaCl stress. Scientia Agricola, 68(4):477-481.
  • Beyaz, R. (2023). Germination and seedling properties of Lotus corniculatus L. under simulated drought stress. Journal of Tekirdag Agricultural Faculty, 20(4): 879-889.
  • Borsai, O., Al Hassan, M., Boscaiu, M., Sestras, R. E. and Vicente, O. (2018). Effects of salt stress on seed germination and seedling growth in Portulaca. Romanian Biotechnological Letters, 23(1), 1–10.
  • Bres, W., Kleiber, T., Markiewicz, B., Mieloszyk, E. and Mieloch, M. (2022). The effect of NaCl stress on the response of lettuce (Lactuca sativa L.). Agronomy, 12(2): 244.
  • Çakmakçı, S. and Dallar, A. (2019). Effects of different temperatures and salt concentrations on the germination of some corn silage varieties. Journal of Tekirdağ Agricultural Faculty, 16(2): 121-132.
  • Coons, J. M., Kuehl, R. O. and Simons, N. R. (1990). Tolerance of ten lettuce cultivars to high temperature combined with NaCl during germination. Journal of the American Society for Horticultural Science, 115: 1004–1007.
  • Darko, E., Ve´gh, B., Khalil, R., Marček, T., Szalai, G. and Pa´l, M. (2019). Metabolic responses of wheat seedlings to osmotic stress induced by various osmolytes under iso-osmotic conditions. PLoS ONE, 14(12): e0226151.
  • Demir, I. and Mavi, K. (2008). Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages. Brazilian Archives of Biology and Technology, 51: 897–902.
  • Ellis, R. H. and Roberts, E. H. (1980). Towards a rational basis for testing seed quality. p. 605-635. In: Hebblethwaite, P.D., ed. Seed production. Butterworths, England.
  • Fernandes, F. M., Arrabaça, M. C. and Carvalho, L. M. M. (2004). Sucrose metabolism in Lupinus albus L. under salt stress. Biologia Plantarum, 48(2): 317-319.
  • Ghiyasi, M., Amirnia, R., Damalas, C. and Moghaddam, S. (2019). Chemical priming with salt and urea improves germination and seedling growth of black cumin (Nigella sativa L.) under Osmotic Stress. Journal of Plant Growth Regulation, 38:1170-1178.
  • Giordano, M., Petropoulos, S. A. and Rouphael, Y. (2021). Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture, 11(463): 1-30.
  • Hussien, E. T. (2022). Salinity stress affecting viability and genetic stability of Lupinus albus L. Vegetos, 35: 674-680.
  • Kaya, M. D., Okçu, G., Atak, M., Cıkılı, Y. and Kolsarıcı, Ö. (2006). Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24:291-295.
  • Khajeh-Hosseini, M., Powell, A. A. and Bingham, I. J. (2003). The interaction between salinity stress and seed vigour during germination of soybean seeds. Seed Science and Technology, 31:715-725.
  • Lei, C., Bagavathiannan, M., Wang, H., Sharpe, S. M., Meng, W. and Yu, J. (2021). Osmopriming with polyethylene glycol (PEG) for abiotic stress tolerance in germinating crop seeds: A review. Agronomy, 11(11): 1-12.
  • Li, J., Yin, L.Y., Jongsma, M. A. and Wang, C. Y. (2011). Effects of light, hydropriming and abiotic stress on seed germination, and shoot and root growth of pyrethrum (Tanacetum cinerariifolium). Industrial Crops and Products, 34: 1543-1549.
  • Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigour. Crop Science, 2:176-177.
  • Michel, B. E. and Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51: 914-916.
  • Moosavi, A., Afshari, R.T., Sharif-Zadeh, F. and Aynehband, A. (2009). Seed priming to increase salt and drought stress tolerance during germination in cultivated species of Amaranth. Seed Science and Technology, 37: 781-785.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell Environment, 25:239-250.
  • Murillo-Amador, B., Lopez-Aguilar, R., Kaya, C., Larrinaga-Mayoral, J. and Flores-Hernandez, A. (2002). Comparative effect of NaCl and PEG on germination emergence and seedling growth of cowpea. Journal of Agronomy and Crop Science, 188: 235-247.
  • Panneerselvam, R., Mutthukumarsamy, M. and Rajan S. N. (1998). Amelioration of NaCl stress by triadimefon in soyabean seedlings. Biologia Plantarum, 41(1): 133-137.
  • Pecetti, L., Annicchiarico, P., Crosta, M., Notario, T., Ferrari, B. and Nazzicari, N. (2023). White Lupin Drought Tolerance: Genetic Variation, Trait Genetic Architecture, and Genome-Enabled Prediction. International Journal of Molecular Sciences, 24: 2351.
  • Perissé, P., Aiazzi, M. T. and Planchuelo, A. M. (2002), Water uptake and germination of Lupinas albus L. and Lupinas angustifolius L. under water stress Seed Science and Technology, 30: 289-298.
  • Pinheriro, C., Passarinho, J. A. and Ricardo, C. P. (2004). Effect of drought and rewatering on the metabolism of Lupinus albus organs. Journal of Plant Physiology, 161:1203-1210.
  • Rehman, S., Harris, P. J. C., Bourne, W. F. and Wilkin, J. (1996). The effect of sodium chloride on germination and the potassium and calcium content of Acacia seeds. Seed Science and Technology, 25: 45–57.
  • Şehirali, S. and Yorgancılar, Ö. (2011). Tohumluk ve Teknolojisi. Düzeltilmiş Dördüncü Baskı. İzmir. 528 s. Slabu, C., Simioniuc, D. P., Lipşa, F. D. and Simioniuc V. (2010). Physiological response to water and salt stress of some white lupine cultivars (Lupinus albus). Lucrări Ştiinţifice Seria Agronomie, 53(1): 64-68.
  • Snedecor, G. W. and Cochran, W. G. (1967). Statistical Methods, 6th ed. Ames, p 693. Iowa: Iowa State University Press, U.S.A.
  • Sousa, E. C., Silva, D. V., Sousa, D. M. M., Torres, S. B. and Oliveira, R. R. T. (2018). Physiological changes in Mimosa caesalpiniifolia Benth. seeds from different sources and submitted to abiotic stresses. Revista Brasileira de Engenharia Agrícola e Ambienta, 22:383-389.
  • Tavares, D. S., Fernandes, T. E. K., Rita, Y. L., Rocha, D. C., Sant’Anna-Santos, B. F., Gomes, M. P. (2021). Germinative metabolism and seedling growth of cowpea (Vigna unguiculata) under salt and osmotic stress. South African Journal of Botany, 139: 399–408.
  • Yagmur, M. and Kaydan, D. (2008). Alleviation of osmotic stress of water and salt in germination and seedling growth of triticale with seed priming treatments. African Journal of Biotechnology, 7: 2156-2162.
  • Yildiz, M., Poyraz, İ., Çavdar, A., Ozgen, Y. and Beyaz, R. (2020). Plant Responses to Salt Stress, in Plant Breeding - Current and Future Views, Eds Abdurakhmonov Ibrokhim Y., IntechOpen, England.
  • Yu, Q. and Rengel, Z. (1999). Drought and salinity differentially influence activities of superoxide dismutases in narrow-leafed lupins. Plant Science, 142: 1-11.
  • Zheng, Q., Liu, Z., Chen, G., Gao, Y., Li, Q. and Wang, J. (2010). Comparison of osmotic regulation in dehydration and salinity stressed sunflower seedlings. Journal of Plant Nutrition, 33: 966-981.
  • Zheng, Y., Jia, A., Ning, T., Xu, J., Li, Z. and Jiang, G. (2008). Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. Journal of Plant Physiology, 165: 1455-1465.
  • Zuffo, A. M., Steiner, F., Sousa, T. D. O., Aguilera, J. G., Teodoro, P. E. and de Alcantara Neto, F. (2020). How does water and salt stress affect the germination and initial growth of Brazilian soya bean cultivars? Journal of Agronomy and Crop Science, 206: 837-850.
There are 41 citations in total.

Details

Primary Language English
Subjects Pasture-Meadow Forage Plants
Journal Section Articles
Authors

Ramazan Beyaz 0000-0003-4588-579X

Veli Vural Uslu This is me 0000-0002-6557-4609

Early Pub Date May 8, 2025
Publication Date May 26, 2025
Submission Date February 27, 2024
Acceptance Date March 25, 2025
Published in Issue Year 2025 Volume: 22 Issue: 2

Cite

APA Beyaz, R., & Uslu, V. V. (2025). Effects of Iso-Osmotic Potential of NaCl and PEG6000 Solutions on Germination and Initial Seedling Growth of Sweet White Lupin (Lupinus albus L). Tekirdağ Ziraat Fakültesi Dergisi, 22(2), 373-385. https://doi.org/10.33462/jotaf.1443573
AMA Beyaz R, Uslu VV. Effects of Iso-Osmotic Potential of NaCl and PEG6000 Solutions on Germination and Initial Seedling Growth of Sweet White Lupin (Lupinus albus L). JOTAF. May 2025;22(2):373-385. doi:10.33462/jotaf.1443573
Chicago Beyaz, Ramazan, and Veli Vural Uslu. “Effects of Iso-Osmotic Potential of NaCl and PEG6000 Solutions on Germination and Initial Seedling Growth of Sweet White Lupin (Lupinus Albus L)”. Tekirdağ Ziraat Fakültesi Dergisi 22, no. 2 (May 2025): 373-85. https://doi.org/10.33462/jotaf.1443573.
EndNote Beyaz R, Uslu VV (May 1, 2025) Effects of Iso-Osmotic Potential of NaCl and PEG6000 Solutions on Germination and Initial Seedling Growth of Sweet White Lupin (Lupinus albus L). Tekirdağ Ziraat Fakültesi Dergisi 22 2 373–385.
IEEE R. Beyaz and V. V. Uslu, “Effects of Iso-Osmotic Potential of NaCl and PEG6000 Solutions on Germination and Initial Seedling Growth of Sweet White Lupin (Lupinus albus L)”, JOTAF, vol. 22, no. 2, pp. 373–385, 2025, doi: 10.33462/jotaf.1443573.
ISNAD Beyaz, Ramazan - Uslu, Veli Vural. “Effects of Iso-Osmotic Potential of NaCl and PEG6000 Solutions on Germination and Initial Seedling Growth of Sweet White Lupin (Lupinus Albus L)”. Tekirdağ Ziraat Fakültesi Dergisi 22/2 (May 2025), 373-385. https://doi.org/10.33462/jotaf.1443573.
JAMA Beyaz R, Uslu VV. Effects of Iso-Osmotic Potential of NaCl and PEG6000 Solutions on Germination and Initial Seedling Growth of Sweet White Lupin (Lupinus albus L). JOTAF. 2025;22:373–385.
MLA Beyaz, Ramazan and Veli Vural Uslu. “Effects of Iso-Osmotic Potential of NaCl and PEG6000 Solutions on Germination and Initial Seedling Growth of Sweet White Lupin (Lupinus Albus L)”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 22, no. 2, 2025, pp. 373-85, doi:10.33462/jotaf.1443573.
Vancouver Beyaz R, Uslu VV. Effects of Iso-Osmotic Potential of NaCl and PEG6000 Solutions on Germination and Initial Seedling Growth of Sweet White Lupin (Lupinus albus L). JOTAF. 2025;22(2):373-85.